SS
Savitha Sridharan
Author with expertise in Optogenetics in Neuroscience and Biophysics Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
689
h-index:
13
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
33

High performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks

Savitha Sridharan et al.Apr 5, 2021
Summary Patterned optogenetic activation of defined neuronal populations in the intact brain can reveal fundamental aspects of the neural codes of perception and behavior. The biophysical properties of existing optogenetic tools, however, constrain the scale, speed, and fidelity of precise optical control. Here we use structure-guided mutagenesis to engineer opsins that exhibit very high potency while retaining fast kinetics. These new opsins enable large-scale, temporally and spatially precise control of population neural activity in vivo and in vitro . We benchmark these new opsins against existing optogenetics tools with whole-cell electrophysiology and all-optical physiology and provide a detailed biophysical characterization of a diverse family of microbial opsins under two-photon illumination. This establishes a toolkit and a resource for matching the optimal opsin to the goals and constraints of patterned optogenetics experiments. Finally, by combining these new opsins with optimized procedures for cell-specific holographic photo-stimulation, we demonstrate the simultaneous co-activation of several hundred spatially defined neurons with a single hologram, and nearly double that number by temporally interleaving holograms at fast rates. These newly engineered opsins substantially extend the capabilities of patterned illumination optogenetic paradigms for addressing neural circuits and behavior.
33
Citation11
0
Save
1

Cryo-EM structures of the channelrhodopsin ChRmine in lipid nanodiscs

Kyle Tucker et al.Nov 22, 2021
Microbial channelrhodopsins are light-gated ion channels widely used for optogenetic manipulation of neuronal activity. ChRmine is a bacteriorhodopsin-like cation channelrhodopsin (BCCR) more closely related to ion pump rhodopsins than other channelrhodopsins. ChRmine displays unique properties favorable for optogenetics including high light sensitivity, a red-shifted activation spectrum, cation selectivity, and large photocurrents while its slow closing kinetics impede some applications. The structural basis for ChRmine function, or that of any other BCCR, is unknown. Here, we present cryo-EM structures of ChRmine in lipid nanodiscs in apo (opsin) and retinal-bound (rhodopsin) forms. The structures reveal an unprecedented trimeric architecture with a lipid filled central pore. Large electronegative cavities on either side of the membrane facilitate high conductance and selectivity for cations over protons. The retinal binding pocket structure suggests spectral and kinetic properties could be tuned with mutations and we identify ChRmine variants with two-fold increased and ten-fold decreased closing rates. These results provide insight into structural features that generate an ultra-potent microbial opsin and provide a platform for rational engineering of channelrhodopsins with improved properties that could expand the scale, depth, and precision of optogenetic manipulations.
1
Citation5
0
Save
0

Complementary networks of cortical somatostatin interneurons enforce layer specific control

Alexander Naka et al.Oct 30, 2018
The neocortex is organized into discrete layers of excitatory neurons: layer 4 receives the densest bottom up projection carrying external sensory data, while layers 2/3 and 5 receive top down inputs from higher cortical areas that may convey sensory expectations and behavioral goals. A subset of cortical somatostatin (SST) neurons gate top down input and control sensory computation by inhibiting the apical dendrites of pyramidal cells in layers 2/3 and 5. However, it is unknown whether an analogous inhibitory mechanism separately and specifically controls activity in layer 4. We hypothesized that distinct SST circuits might exist to inhibit specific cortical layers. By enforcing layer-specific inhibition, distinct SST subnetworks could mediate pathway-specific gain control, such as regulating the balance between bottom up and top down input. Employing a combination of high precision circuit mapping, in vivo optogenetic perturbations, and single cell transcriptional profiling, we reveal distinct and complementary SST circuits that specifically and reciprocally interconnect with excitatory cells in either layer 4 or layers 2/3 and 5. Our data further define a transcriptionally distinct SST neuronal sub-class that powerfully gates bottom up sensory activity during active sensation by regulating layer 4 activity. This integrated paradigm further represents a potentially generalizable approach to identify and characterize neuronal cell types and reveal their in vivo function.
197

Cryo-EM structure of the SARS-CoV-2 3a ion channel in lipid nanodiscs

David Kern et al.Jun 18, 2020
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes the coronavirus disease 2019 (COVID-19). SARS-CoV-2 encodes three putative ion channels: E, 8a, and 3a 1,2 . 3a is expressed in SARS patient tissue and anti-3a antibodies are observed in patient plasma 3–6 . 3a has been implicated in viral release 7 , inhibition of autophagy 8 , inflammasome activation 9 , and cell death 10,11 and its deletion reduces viral titer and morbidity in mice 1 , raising the possibility that 3a could be an effective vaccine or therapeutic target 3,12 . Here, we present the first cryo-EM structures of SARS-CoV-2 3a to 2.1 Å resolution and demonstrate 3a forms an ion channel in reconstituted liposomes. The structures in lipid nanodiscs reveal 3a dimers and tetramers adopt a novel fold with a large polar cavity that spans halfway across the membrane and is accessible to the cytosol and the surrounding bilayer through separate water- and lipid-filled openings. Electrophysiology and fluorescent ion imaging experiments show 3a forms Ca 2+ -permeable non-selective cation channels. We identify point mutations that alter ion permeability and discover polycationic inhibitors of 3a channel activity. We find 3a-like proteins in multiple Alphacoronavirus and Betacoronavirus lineages that infect bats and humans. These data show 3a forms a functional ion channel that may promote COVID-19 pathogenesis and suggest targeting 3a could broadly treat coronavirus diseases.