GB
Giuseppe Balistreri
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
19
(95% Open Access)
Cited by:
1,759
h-index:
23
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity

Ludovico Cantuti‐Castelvetri et al.Oct 20, 2020
Another host factor for SARS-CoV-2 Virus-host interactions determine cellular entry and spreading in tissues. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the earlier SARS-CoV use angiotensin-converting enzyme 2 (ACE2) as a receptor; however, their tissue tropism differs, raising the possibility that additional host factors are involved. The spike protein of SARS-CoV-2 contains a cleavage site for the protease furin that is absent from SARS-CoV (see the Perspective by Kielian). Cantuti-Castelvetri et al. now show that neuropilin-1 (NRP1), which is known to bind furin-cleaved substrates, potentiates SARS-CoV-2 infectivity. NRP1 is abundantly expressed in the respiratory and olfactory epithelium, with highest expression in endothelial and epithelial cells. Daly et al. found that the furin-cleaved S1 fragment of the spike protein binds directly to cell surface NRP1 and blocking this interaction with a small-molecule inhibitor or monoclonal antibodies reduced viral infection in cell culture. Understanding the role of NRP1 in SARS-CoV-2 infection may suggest potential targets for future antiviral therapeutics. Science , this issue p. 856 , p. 861 ; see also p. 765
0
Citation1,703
0
Save
363

Pediatric nasal epithelial cells are less permissive to SARS-CoV-2 replication compared to adult cells

Yanshan Zhu et al.Mar 8, 2021
Abstract Children typically experience more mild symptoms of COVID-19 when compared to adults. There is a strong body of evidence that children are also less susceptible to SARS-CoV-2 infection with the ancestral viral isolate. However, the emergence of SARS-CoV-2 variants of concern (VOCs) has been associated with an increased number of pediatric infections. Whether this is the result of widespread adult vaccination or fundamental changes in the biology of SARS-CoV-2 remains to be determined. Here, we use primary nasal epithelial cells from children and adults, differentiated at an air-liquid interface to show that the ancestral SARS-CoV-2 replicates to significantly lower titers in the nasal epithelial cells of children compared to those of adults. This was associated with a heightened antiviral response to SARS-CoV-2 in the nasal epithelial cells of children. Importantly, the Delta variant also replicated to significantly lower titres in the nasal epithelial cells of children. This trend was markedly less pronounced in the case of Omicron. It is also striking to note that, at least in terms of viral RNA, Omicron replicated better in pediatric NECs compared to both Delta and the ancestral virus. Taken together, these data show that the nasal epithelium of children supports lower infection and replication of ancestral SARS-CoV-2, although this may be changing as the virus evolves.
363
Citation13
0
Save
1

MOLECULAR VIDEOGAMING: SUPER-RESOLVED TRAJECTORY-BASED NANOCLUSTERING ANALYSIS USING SPATIO-TEMPORAL INDEXING

Tristan Wallis et al.Sep 9, 2021
ABSTRACT Single-molecule localization microscopy (SMLM) techniques are emerging as vital tools to unravel the nanoscale world of living cells. However, current analysis methods primarily focus on defining spatial nanoclusters based on detection density, but neglect important temporal information such as cluster lifetime and recurrence in “hotspots” on the plasma membrane. Spatial indexing is widely used in videogames to effectively detect interactions between moving geometric objects. Here, we use the R-tree spatial indexing algorithm to perform SMLM data analysis and determine whether the bounding boxes of individual molecular trajectories overlap, as a measure of their potential membership in nanoclusters. Extending the spatial indexing into the time dimension allows unique resolution of spatial nanoclusters into multiple spatiotemporal clusters. We have validated this approach using synthetic and SMLM-derived data. Quantitative characterization of recurring nanoclusters allowed us to demonstrate that both syntaxin1a and Munc18-1 molecules transiently cluster in hotspots on the neurosecretory plasma membrane, offering unprecedented insights into the dynamics of these protein which are essential to neuronal communication. This new analytical tool, named Nanoscale Spatiotemporal Indexing Clustering (NASTIC), has been implemented as a free and open-source Python graphic user interface.
245

The SARS-CoV-2 spike (S) and the orthoreovirus p15 cause neuronal and glial fusion

Ramón Martínez‐Mármol et al.Sep 1, 2021
Abstract Numerous enveloped viruses use specialized surface molecules called fusogens to enter host cells 1 . During virus replication, these fusogens decorate the host cells membrane enabling them the ability to fuse with neighboring cells, forming syncytia that the viruses use to propagate while evading the immune system. Many of these viruses, including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), infect the brain and may cause serious neurological symptoms through mechanisms which remain poorly understood 2–4 . Here we show that expression of either the SARS-CoV-2 spike (S) protein or p15 protein from the baboon orthoreovirus is sufficient to induce fusion between interconnected neurons, as well as between neurons and glial cells. This phenomenon is observed across species, from nematodes to mammals, including human embryonic stem cells-derived neurons and brain organoids. We show that fusion events are progressive, can occur between distant neurites, and lead to the formation of multicellular syncytia. Finally, we reveal that in addition to intracellular molecules, fusion events allow diffusion and movement of large organelles such as mitochondria between fused neurons. Our results provide important mechanistic insights into how SARS-CoV-2 and other viruses could affect the nervous system circuitries causing neurological symptoms.
245
Citation4
0
Save
57

SARS-CoV-2 requires acidic pH to infect cells

Alex Kreutzberger et al.Jun 9, 2022
SARS-CoV-2 cell entry starts with membrane attachment and ends with spike-protein (S) catalyzed membrane fusion depending on two cleavage steps, one usually by furin in producing cells and the second by TMPRSS2 on target cells. Endosomal cathepsins can carry out both. Using real-time 3D single virion tracking, we show fusion and genome penetration requires virion exposure to an acidic milieu of pH 6.2-6.8, even when furin and TMPRSS2 cleavages have occurred. We detect the sequential steps of S1-fragment dissociation, fusion, and content release from the cell surface in TMPRRS2 overexpressing cells only when exposed to acidic pH. We define a key role of an acidic environment for successful infection, found in endosomal compartments and at the surface of TMPRSS2 expressing cells in the acidic milieu of the nasal cavity.Infection by SARS-CoV-2 depends upon the S large spike protein decorating the virions and is responsible for receptor engagement and subsequent fusion of viral and cellular membranes allowing release of virion contents into the cell. Using new single particle imaging tools, to visualize and track the successive steps from virion attachment to fusion, combined with chemical and genetic perturbations of the cells, we provide the first direct evidence for the cellular uptake routes of productive infection in multiple cell types and their dependence on proteolysis of S by cell surface or endosomal proteases. We show that fusion and content release always require the acidic environment from endosomes, preceded by liberation of the S1 fragment which depends on ACE2 receptor engagement.Detailed molecular snapshots of the productive infectious entry pathway of SARS-CoV-2 into cells.
57
Paper
Citation4
0
Save
15

Nanomolar inhibition of SARS-CoV-2 infection by an unmodified peptide targeting the pre-hairpin intermediate of the spike protein

Kailu Yang et al.Aug 11, 2022
Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge currently available COVID-19 vaccines and monoclonal antibody therapies through epitope change on the receptor binding domain of the viral spike glycoprotein. Hence, there is a specific urgent need for alternative antivirals that target processes less likely to be affected by mutation, such as the membrane fusion step of viral entry into the host cell. One such antiviral class includes peptide inhibitors which block formation of the so-called HR1HR2 six-helix bundle of the SARS-CoV-2 spike (S) protein and thus interfere with viral membrane fusion. Here we performed structural studies of the HR1HR2 bundle, revealing an extended, well-folded N-terminal region of HR2 that interacts with the HR1 triple helix. Based on this structure, we designed an extended HR2 peptide that achieves single-digit nanomolar inhibition of SARS-CoV-2 in cell-based fusion, VSV-SARS-CoV-2 chimera, and authentic SARS-CoV-2 infection assays without the need for modifications such as lipidation or chemical stapling. The peptide also strongly inhibits all major SARS-CoV-2 variants to date. This extended peptide is ~100-fold more potent than all previously published short, unmodified HR2 peptides, and it has a very long inhibition lifetime after washout in virus infection assays, suggesting that it targets a pre-hairpin intermediate of the SARS-CoV-2 S protein. Together, these results suggest that regions outside the HR2 helical region may offer new opportunities for potent peptide-derived therapeutics for SARS-CoV-2 and its variants, and even more distantly related viruses, and provide further support for the pre-hairpin intermediate of the S protein.SARS-CoV-2 infection requires fusion of viral and host membranes, mediated by the viral spike glycoprotein (S). Due to the importance of viral membrane fusion, S has been a popular target for developing vaccines and therapeutics. We discovered a simple peptide that inhibits infection by all major variants of SARS-CoV-2 with nanomolar efficacies. In marked contrast, widely used shorter peptides that lack a key N-terminal extension are about 100 x less potent than this peptide. Our results suggest that a simple peptide with a suitable sequence can be a potent and cost-effective therapeutic against COVID-19 and they provide new insights at the virus entry mechanism.
15
Paper
Citation1
0
Save
5

Characterisation of the Semliki Forest Virus-host cell interactome reveals the viral capsid protein as an inhibitor of nonsense-mediated mRNA decay

Lara Contu et al.Oct 12, 2020
Abstract The positive-sense, single-stranded RNA alphaviruses pose a potential epidemic threat. Understanding the complex interactions between the viral and the host cell proteins is crucial for elucidating the mechanisms underlying successful virus replication strategies and for developing specific antiviral interventions. Here we present the first comprehensive protein-protein interaction map between the proteins of Semliki Forest Virus (SFV), a mosquito-borne member of the alphaviruses, and host cell proteins. Among the many identified cellular interactors of SFV proteins, the enrichment of factors involved in translation and nonsense-mediated mRNA decay (NMD) was striking, reflecting the virus’ hijacking of the translation machinery and indicating viral countermeasures for escaping NMD by inhibiting NMD at later time points during the infectious cycle. In addition to observing a general inhibition of NMD about 4 hours post infection, we also demonstrate that transient expression of the SFV capsid protein is sufficient to inhibit NMD in cells, suggesting that the massive production of capsid protein during the SFV reproduction cycle is responsible for NMD inhibition.
5
Citation1
0
Save
Load More