SO
Sara Olson
Author with expertise in Regulation of RNA Processing and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
4,326
h-index:
39
/
i10-index:
51
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex

Caryn Hale et al.Nov 1, 2009
+5
S
P
C
Compelling evidence indicates that the CRISPR-Cas system protects prokaryotes from viruses and other potential genome invaders. This adaptive prokaryotic immune system arises from the clustered regularly interspaced short palindromic repeats (CRISPRs) found in prokaryotic genomes, which harbor short invader-derived sequences, and the CRISPR-associated (Cas) protein-coding genes. Here, we have identified a CRISPR-Cas effector complex that is comprised of small invader-targeting RNAs from the CRISPR loci (termed prokaryotic silencing (psi)RNAs) and the RAMP module (or Cmr) Cas proteins. The psiRNA-Cmr protein complexes cleave complementary target RNAs at a fixed distance from the 3' end of the integral psiRNAs. In Pyrococcus furiosus, psiRNAs occur in two size forms that share a common 5' sequence tag but have distinct 3' ends that direct cleavage of a given target RNA at two distinct sites. Our results indicate that prokaryotes possess a unique RNA silencing system that functions by homology-dependent cleavage of invader RNAs.
0
Citation996
0
Save
0

Codon Optimality Is a Major Determinant of mRNA Stability

Vladimir Presnyak et al.Mar 1, 2015
+8
Y
N
V
mRNA degradation represents a critical regulated step in gene expression. Although the major pathways in turnover have been identified, accounting for disparate half-lives has been elusive. We show that codon optimality is one feature that contributes greatly to mRNA stability. Genome-wide RNA decay analysis revealed that stable mRNAs are enriched in codons designated optimal, whereas unstable mRNAs contain predominately non-optimal codons. Substitution of optimal codons with synonymous, non-optimal codons results in dramatic mRNA destabilization, whereas the converse substitution significantly increases stability. Further, we demonstrate that codon optimality impacts ribosome translocation, connecting the processes of translation elongation and decay through codon optimality. Finally, we show that optimal codon content accounts for the similar stabilities observed in mRNAs encoding proteins with coordinated physiological function. This work demonstrates that codon optimization exists as a mechanism to finely tune levels of mRNAs and, ultimately, proteins.
0
Citation901
0
Save
0

Genome-wide Analysis of Drosophila Circular RNAs Reveals Their Structural and Sequence Properties and Age-Dependent Neural Accumulation

Jakub Westholm et al.Nov 26, 2014
+6
S
P
J

Summary

 Circularization was recently recognized to broadly expand transcriptome complexity. Here, we exploit massive Drosophila total RNA-sequencing data, >5 billion paired-end reads from >100 libraries covering diverse developmental stages, tissues, and cultured cells, to rigorously annotate >2,500 fruit fly circular RNAs. These mostly derive from back-splicing of protein-coding genes and lack poly(A) tails, and the circularization of hundreds of genes is conserved across multiple Drosophila species. We elucidate structural and sequence properties of Drosophila circular RNAs, which exhibit commonalities and distinctions from mammalian circles. Notably, Drosophila circular RNAs harbor >1,000 well-conserved canonical miRNA seed matches, especially within coding regions, and coding conserved miRNA sites reside preferentially within circularized exons. Finally, we analyze the developmental and tissue specificity of circular RNAs and note their preferred derivation from neural genes and enhanced accumulation in neural tissues. Interestingly, circular isoforms increase substantially relative to linear isoforms during CNS aging and constitute an aging biomarker.
0
Citation878
0
Save
1

A large-scale binding and functional map of human RNA-binding proteins

Eric Nostrand et al.Jul 29, 2020
+36
G
P
E
Abstract Many proteins regulate the expression of genes by binding to specific regions encoded in the genome 1 . Here we introduce a new data set of RNA elements in the human genome that are recognized by RNA-binding proteins (RBPs), generated as part of the Encyclopedia of DNA Elements (ENCODE) project phase III. This class of regulatory elements functions only when transcribed into RNA, as they serve as the binding sites for RBPs that control post-transcriptional processes such as splicing, cleavage and polyadenylation, and the editing, localization, stability and translation of mRNAs. We describe the mapping and characterization of RNA elements recognized by a large collection of human RBPs in K562 and HepG2 cells. Integrative analyses using five assays identify RBP binding sites on RNA and chromatin in vivo, the in vitro binding preferences of RBPs, the function of RBP binding sites and the subcellular localization of RBPs, producing 1,223 replicated data sets for 356 RBPs. We describe the spectrum of RBP binding throughout the transcriptome and the connections between these interactions and various aspects of RNA biology, including RNA stability, splicing regulation and RNA localization. These data expand the catalogue of functional elements encoded in the human genome by the addition of a large set of elements that function at the RNA level by interacting with RBPs.
1
Citation866
0
Save
0

Diversity and dynamics of the Drosophila transcriptome

James Brown et al.Mar 16, 2014
+38
C
J
J
Animal transcriptomes are dynamic, with each cell type, tissue and organ system expressing an ensemble of transcript isoforms that give rise to substantial diversity. Here we have identified new genes, transcripts and proteins using poly(A)+ RNA sequencing from Drosophila melanogaster in cultured cell lines, dissected organ systems and under environmental perturbations. We found that a small set of mostly neural-specific genes has the potential to encode thousands of transcripts each through extensive alternative promoter usage and RNA splicing. The magnitudes of splicing changes are larger between tissues than between developmental stages, and most sex-specific splicing is gonad-specific. Gonads express hundreds of previously unknown coding and long non-coding RNAs (lncRNAs), some of which are antisense to protein-coding genes and produce short regulatory RNAs. Furthermore, previously identified pervasive intergenic transcription occurs primarily within newly identified introns. The fly transcriptome is substantially more complex than previously recognized, with this complexity arising from combinatorial usage of promoters, splice sites and polyadenylation sites. A large-scale transcriptome analysis in Drosophila melanogaster, across tissues, cell types and conditions, provides insights into global patterns and diversity of transcription initiation, splicing, polyadenylation and non-coding RNA expression.
0
Citation684
0
Save
0

Resources for the comprehensive discovery of functional RNA elements

Balaji Sundararaman et al.Nov 3, 2015
+14
S
L
B
Transcriptome-wide maps of RNA binding protein (RBP)-RNA interactions by immunoprecipitation (IP)-based methods such as RNA IP (RIP) and crosslinking and IP (CLIP) are key starting points for evaluating the molecular roles of the thousands of human RBPs. A significant bottleneck to the application of these methods in diverse cell-lines, tissues and developmental stages, is the availability of validated IP-quality antibodies. Using IP followed by immunoblot assays, we have developed a validated repository of 438 commercially available antibodies that interrogate 365 unique RBPs. In parallel, 362 short-hairpin RNA (shRNA) constructs against 276 unique RBPs were also used to confirm specificity of these antibodies. These antibodies can characterize subcellular RBP localization. With the burgeoning interest in the roles of RBPs in cancer, neurobiology and development, these resources are invaluable to the broad scientific community. Detailed information about these resources is publicly available at the ENCODE portal (https://www.encodeproject.org/).
0
Citation1
0
Save
0

Maturity2, a novel regulator of flowering time in Sorghum bicolor, increases expression of SbPRR37 and SbCO in long days delaying flowering

Anna Casto et al.Jan 30, 2019
+3
S
A
A
Sorghum bicolor is a drought-resilient facultative short-day C4 grass that is grown for grain, forage, and biomass. Adaptation of sorghum for grain production in temperate regions resulted in the selection of mutations in Maturity loci (Ma1 – Ma6) that reduced photoperiod sensitivity and resulted in earlier flowering in long days. Prior studies identified the genes associated with Ma1 (PRR37), Ma3 (PHYB), Ma5 (PHYC) and Ma6 (GHD7) and characterized their role in the flowering time regulatory pathway. The current study focused on understanding the function and identity of Ma2. Ma2 delayed flowering in long days by selectively enhancing the expression of SbPRR37 (Ma1) and SbCO, genes that co-repress the expression of SbCN12, a source of florigen. Genetic analysis identified epistatic interactions between Ma2 and Ma4 and located QTL corresponding to Ma2 on SBI02 and Ma4 on SBI10. Positional cloning and whole genome sequencing identified a candidate gene for Ma2, Sobic.002G302700, which encodes a SET and MYND (SYMD) domain lysine methyltransferase. Nine sorghum genotypes previously identified as recessive for Ma2 contained the mutated version of Sobic.002G302700 present in 80M (ma2).
0

A Large-Scale Binding and Functional Map of Human RNA Binding Proteins

Eric Nostrand et al.Aug 23, 2017
+37
C
L
E
Genomes encompass all the information necessary to specify the development and function of an organism. In addition to genes, genomes also contain a myriad of functional elements that control various steps in gene expression. A major class of these elements function only when transcribed into RNA as they serve as the binding sites for RNA binding proteins (RBPs), which act to control post-transcriptional processes including splicing, cleavage and polyadenylation, RNA editing, RNA localization, translation, and RNA stability. Despite the importance of these functional RNA elements encoded in the genome, they have been much less studied than genes and DNA elements. Here, we describe the mapping and characterization of RNA elements recognized by a large collection of human RBPs in K562 and HepG2 cells. These data expand the catalog of functional elements encoded in the human genome by addition of a large set of elements that function at the RNA level through interaction with RBPs.
0

Genome-wide Identification of Zero Nucleotide Recursive Splicing in Drosophila

Michael Duff et al.Jun 11, 2014
+6
M
A
M
Recursive splicing is a process in which large introns are removed in multiple steps by resplicing at ratchet points - 5? splice sites recreated after splicing. Recursive splicing was first identified in the Drosophila Ultrabithorax (Ubx) gene and only three additional Drosophila genes have since been experimentally shown to undergo recursive splicing. Here, we identify 196 zero nucleotide exon ratchet points in 130 introns of 115 Drosophila genes from total RNA sequencing data generated from developmental time points, dissected tissues, and cultured cells. Recursive splicing events were identified by splice junctions that map to annotated 5? splice sites and unannotated intronic 3? splice sites, the presence of the sequence AG/GT at the 3? splice site, and a 5? to 3? gradient of decreasing RNA-Seq read density indicative of co-transcriptional splicing. The sequential nature of recursive splicing was confirmed by identification of lariat introns generated by splicing to and from the ratchet points. We also show that recursive splicing is a constitutive process, and that the sequence and function of ratchet points are evolutionarily conserved. Together these results indicate that recursive splicing is commonly used in Drosophila and provides insight into the mechanisms by which some introns are removed.
4

Late- life shift in caloric intake affects fly longevity and metabolism

Michael Li et al.May 14, 2023
+8
D
K
M
Abstract Caloric restriction (CR) delays the onset of age-related changes and extends lifespan in most species, but how late in life organisms benefit from switching to a low-calorie (L) diet is unexplored. We transferred wild type male flies from a high- (H) to a L-calorie diet (HL) or vice versa (LH) at different times. Late-life HL shift immediately and profoundly reduces fly mortality rate to briefly lower rate than in flies on a constant L diet, and increases lifespan. Conversely, a LH shift increases mortality and hazard rate, which is temporarily higher than in flies aged on a H diet, and leads to shorter lifespan. Transcriptomic changes within 48 hours following diet shift uncover physiological adaptations to available nutrients. Unexpectedly, more abundant transcriptomic changes accompanied LH shift, including ribosome biogenesis, and promotion of growth, which likely contributes to higher mortality rate. Considering that the beneficial effects of CR on physiology and lifespan are conserved across many organisms, our findings suggest that CR interventions in older humans may counteract the detrimental effects of H diets even when initiated later in life.