JW
Julie Williams
Author with expertise in Mechanisms of Alzheimer's Disease
University of Pennsylvania, Cardiff University, UK Dementia Research Institute
+ 7 more
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(43% Open Access)
Cited by:
27
h-index:
50
/
i10-index:
106
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Common variants in Alzheimer’s disease: Novel association of six genetic variants with AD and risk stratification by polygenic risk scores

Itziar Rojas et al.Nov 25, 2023
+70
N
S
I
ABSTRACT BACKGROUND Disentangling the genetic constellation underlying Alzheimer’s disease (AD) is important. Doing so allows us to identify biological pathways underlying AD, point towards novel drug targets and use the variants for individualised risk predictions in disease modifying or prevention trials. In the present work we report on the largest genome-wide association study (GWAS) for AD risk to date and show the combined utility of proven AD loci for precision medicine using polygenic risk scores (PRS). METHODS Three sets of summary statistics were included in our meta-GWAS of AD: an Spanish case-control study (GR@ACE/DEGESCO study, n = 12,386), the case-control study of International Genomics of Alzheimer project (IGAP, n = 82,771) and the UK Biobank (UKB) AD-by-proxy case-control study (n=314,278). Using these resources, we performed a fixed-effects inverse-variance-weighted meta-analysis. Detected loci were confirmed in a replication study of 19,089 AD cases and 39,101 controls from 16 European-ancestry cohorts not previously used. We constructed a weighted PRS based on the 39 AD variants. PRS were generated by multiplying the genotype dosage of each risk allele for each variant by its respective weight, and then summing across all variants. We first validated it for AD in independent data (assessing effects of sub-threshold signal, diagnostic certainty, age at onset and sex) and tested its effect on risk (odds for disease) and age at onset in the GR@ACE/DEGESCO study. FINDINGS Using our meta-GWAS approach and follow-up analysis, we identified novel genome-wide significant associations of six genetic variants with AD risk (rs72835061 -CHRNE , rs2154481 -APP , rs876461 -PRKD3/NDUFAF7 , rs3935877 -PLCG2 and two missense variants: rs34173062/rs34674752 in SHARPIN gene) and confirmed a stop codon mutation in the IL34 gene increasing the risk of AD ( IL34-Tyr213Ter ), and two other variants in PLCG2 and HS3ST1 regions. This brings the total number of genetic variants associated with AD to 39 (excluding APOE ). The PRS based on these variants was associated with AD in an independent clinical AD-case control dataset (OR=1.30, per 1-SD increase in the PRS, 95%CI 1.18-1.44, p = 1.1×10 −7 ), a similar effect to that in the GR@ACE/DEGESCO (OR=1.27, 95%CI 1.23-1.32, p = 7.4×10 −39 ). We then explored the combined effects of these 39 variants in a PRS for AD risk and age-at-onset stratification in GR@ACE/DEGESCO. Excluding APOE , we observed a gradual risk increase over the 2% tiles; when comparing the extremes, those with the 2% highest risk had a 2.98-fold (95% CI 2.12–4.18, p = 3.2×10 −10 ) increased risk compared to those with the 2% lowest risk ( p = 5.9×10 −10 ). Using the PRS we identified APOE ε33 carriers with a similar risk as APOE ε 4 heterozygotes carriers, as well as APOE ε4 heterozygote carriers with a similar risk as APOE ε 4 homozygote. Considering age at onset; there was a 9-year difference between median onset of AD the lowest risk group and the highest risk group (82 vs 73 years; p = 1.6×10 −6 ); a 4-year median onset difference (81 vs 77 years; p = 6.9×10 −5 ) within APOE ε4 heterozygotes and a 5.5-year median onset difference (78.5 vs 73 years; p = 4.6×10 −5 ) within APOE ε4 carriers. INTERPRETATION We identified six novel genetic variants associated with AD-risk, among which one common APP variant. A PRS of all genetic loci reported to date could be a robust tool to predict the risk and age at onset of AD, beyond APOE alone. These properties make PRS instrumental in selecting individuals at risk in order to apply preventative strategies and might have potential use in diagnostic work-up.
13

The Alzheimer’s disease protective P522R variant ofPLCG2, consistently enhances stimulus-dependent PLCγ2 activation, depleting substrate and altering cell function

Emily Maguire et al.Oct 24, 2023
+11
T
G
E
Abstract Recent genome-wide association studies of Alzheimer’s disease (AD) have identified variants implicating immune pathways in disease development. A rare coding variant of PLCG2 , which encodes PLCγ2, shows a significant protective effect for AD (rs72824905, P522R, P =5.38×10 −10 , Odds Ratio = 0.68). Molecular dynamic modelling of the PLCγ2-R522 variant, situated within the auto-inhibitory domain of PLCγ2, suggests a structural change to the protein. Through CRISPR-engineering we have generated novel PLCG2 -R522 harbouring human induced pluripotent cell lines (hiPSC) and a mouse knockin model, neither of which exhibits alterations in endogenous PLCG2 expression. Mouse microglia and macrophages and hiPSC-derived microglia-like cells with the R522 mutation, all demonstrate a consistent non-redundant hyperfunctionality in the context of normal expression of other PLC isoforms. This signalling alteration manifests as enhanced cellular Ca 2+ store release (∼20-40% increase) in response to physiologically-relevant stimuli (e.g. Fc receptor ligation and Aβ oligomers). This hyperfunctionality resulted in increased PIP 2 depletion in the cells with the PLCγ2-R522 variant after exposure to stimuli and reduced basal detection of PIP 2 levels in vivo . These PLCγ2-R522 associated abnormalities resulted in impairments to phagocytosis (fungal and bacterial particles) and enhanced endocytosis (Aβ oligomers and dextran). PLCγ2 sits downstream of disease relevant pathways, such as TREM2 and CSF1R and alterations in its activity, direct impacts cell function, which in the context of the inherent drugability of enzymes such as PLCγ2, raise the prospect of manipulation of PLCγ2 as a therapeutic target in Alzheimer’s Disease.
13
Citation2
0
Save
1

Alzheimer’s genetic risk effects on cerebral blood flow are spatially consistent and proximal to gene expression across the lifespan

Hannah Chandler et al.Jan 8, 2021
+3
D
R
H
Abstract Cerebrovascular dysregulation is a hallmark feature of Alzheimer’s disease (AD), where alterations in cerebral blood flow (CBF) are observed decades prior to symptom onset. Genome-wide association studies (GWAS) show that AD has a polygenic aetiology, providing a tool for studying AD susceptibility across the lifespan. Here, we ascertain whether AD genetic risk effects on CBF previously observed (Chandler et al., 2019) remain consistent across the lifespan. We further provide a causal mechanism to AD genetic risk scores (AD-GRS) effects by establishing spatial convergence between AD-GRS associated regional reductions in CBF and mRNA expression of the proximal AD transcripts using independent data from the Allen Brain Atlas. We analysed grey matter (GM) CBF in a young cohort (N=75; aged 18-35) and an older cohort (N=90; aged 55-85). Critically, we observed that AD-GRS was negatively associated with whole brain GM CBF in the older cohort (standardised β −0.38 [−0.68 – −0.09], P = 0.012), consistent with our prior observation in younger healthy adults (Chandler et al., 2019). We then demonstrate that the regional impact of AD-GRS on GM CBF was spatially consistent across the younger and older samples (r = 0.233, P = 0.035). Finally, we show that CBF across the cortex was related to the regional expression of the genes proximal to SNP’s used to estimate AD-GRS in both younger and older cohorts (Z TWO-TAILED = −1.99, P= 0.047; Z TWO-TAILED = −2.153 P = 0.032, respectively). These observations collectively demonstrate that AD risk alleles have a negative influence on brain vascular function and likely contribute to cerebrovascular changes preceding the onset of clinical symptoms, potentially driven by regional expression of proximal AD risk genes across the brain. Our observations suggest that reduced CBF is an early antecedent of AD and a key modifiable target for therapeutic intervention in individuals with a higher cumulative genetic risk for AD. This study will further enable identification of key molecular processes that underpin AD genetic risk related reductions in CBF that could be targeted decades prior to the onset of neurodegeneration.
1
Paper
Citation1
0
Save
0

Analysis of shared heritability in common disorders of the brain

Vesa Anttila et al.May 6, 2020
+36
H
B
V
Disorders of the brain exhibit considerable epidemiological comorbidity and frequently share symptoms, provoking debate about the extent of their etiologic overlap. We quantified the genetic sharing of 25 brain disorders based on summary statistics from genome-wide association studies of 215,683 patients and 657,164 controls, and their relationship to 17 phenotypes from 1,191,588 individuals. Psychiatric disorders show substantial sharing of common variant risk, while neurological disorders appear more distinct from one another. We observe limited evidence of sharing between neurological and psychiatric disorders, but do identify robust sharing between disorders and several cognitive measures, as well as disorders and personality types. We also performed extensive simulations to explore how power, diagnostic misclassification and phenotypic heterogeneity affect genetic correlations. These results highlight the importance of common genetic variation as a source of risk for brain disorders and the value of heritability-based methods in understanding their etiology.
0

Increased posterior default mode network activity and structural connectivity in young adult APOE-ε4 carriers: a multi-modal imaging investigation

Carl Hodgetts et al.May 7, 2020
+5
H
J
C
Young adult APOE-ε4 carriers show increased activity in posterior regions of the default mode network (pDMN), but how this is related to structural connectivity is unknown. Thirty young adults (half APOE-ε4 carriers, the other half APOE-ε3ε3/ε2ε3; mean age 20 years) were scanned using both diffusion and functional magnetic resonance imaging. Diffusion tractography was used to quantify the microstructure (mean diffusivity, MD; fractional anisotropy, FA) of the parahippocampal cingulum bundle (PHCB), which links pDMN and the medial temporal lobe. APOE-ε4 carriers had lower MD and higher FA relative to non-carriers in PHCB. Further, PHCB microstructure was selectively associated with pDMN activity during a scene discrimination task known to be sensitive to Alzheimer's disease (AD). These findings are consistent with a lifespan view of AD risk, where early-life structural and functional brain changes in specific, vulnerable networks leads to increased neural activity that may ultimately trigger amyloid-β deposition.
0

Alzheimer's genetic risk effects on cerebral blood flow are spatially consistent and proximal to gene expression across the lifespan

Hannah Chandler et al.Oct 24, 2023
+3
D
R
H
Cerebrovascular dysregulation is a hallmark feature of Alzheimer’s disease (AD), where alterations in cerebral blood flow (CBF) are observed decades prior to symptom onset. Genome-wide association studies (GWAS) show that AD has a polygenic aetiology, providing a tool for studying AD susceptibility across the lifespan. Here, we ascertain whether AD genetic risk effects on CBF previously observed (Chandler et al., 2019) remain consistent across the lifespan. We further provide a causal mechanism to AD genetic risk scores (AD-GRS) effects by establishing spatial convergence between AD-GRS associated regional reductions in CBF and mRNA expression of the proximal AD transcripts using independent data from the Allen Brain Atlas. We analysed grey matter (GM) CBF in a young cohort (N=75; aged 18-35) and an older cohort (N=90; aged 55-85). Critically, we observed that AD-GRS was negatively associated with whole brain GM CBF in the older cohort (standardised β −0.38 [−0.68 – −0.09], P = 0.012), consistent with our prior observation in younger healthy adults (Chandler et al., 2019). We then demonstrate that the regional impact of AD-GRS on GM CBF was spatially consistent across the younger and older samples (r = 0.233, P = 0.035). Finally, we show that CBF across the cortex was related to the regional expression of the genes proximal to SNP’s used to estimate AD-GRS in both younger and older cohorts (ZTWO-TAILED = −1.99, P= 0.047; ZTWO-TAILED = −2.153 P = 0.032, respectively). These observations collectively demonstrate that AD risk alleles have a negative influence on brain vascular function and likely contribute to cerebrovascular changes preceding the onset of clinical symptoms, potentially driven by regional expression of proximal AD risk genes across the brain. Our observations suggest that reduced CBF is an early antecedent of AD and a key modifiable target for therapeutic intervention in individuals with a higher cumulative genetic risk for AD. This study will further enable identification of key molecular processes that underpin AD genetic risk related reductions in CBF that could be targeted decades prior to the onset of neurodegeneration.
0

Uncoupling of synaptic loss from amyloid burden by an Alzheimer′s disease protective variant of PLCγ2.

Ryan Bevan et al.Sep 23, 2023
+4
T
E
R
A rare coding missense variant (rs7824905; P522R) in PLCG2 decreases the risk of late-onset Alzheimer′s disease, but how this protective effect is mediated is unclear. Here we show that the protective variant of PLCγ2 leads to a notable preservation of synaptic integrity and reduced peri-plaque microglial engulfment of synapses independently of amyloid burden. Our data advocate for a direct central role of PLCγ2 in mediating synaptic loss as part of the pathological process of Alzheimer′s disease (AD), prioritising it as a therapeutic target and modulator of disease.