JN
Jenna Nichols
Author with expertise in Epidemiology and Management of Cytomegalovirus Infection
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(92% Open Access)
Cited by:
819
h-index:
25
/
i10-index:
35
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research

Suzannah Rihn et al.Feb 25, 2021
The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science.
0
Citation197
0
Save
46

periscope: sub-genomic RNA identification in SARS-CoV-2 Genomic Sequencing Data

Matthew Parker et al.Jul 1, 2020
Abstract We have developed periscope, a tool for the detection and quantification of sub-genomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed “sub-genomic RNAs”. sgRNAs are produced through discontinuous transcription which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L which is located in the 5’ UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5’ end of all sgRNA. We applied periscope to 1,155 SARS-CoV-2 genomes from Sheffield, UK and validated our findings using orthogonal datasets and in vitro cell systems. Using a simple local alignment to detect reads which contain the leader sequence we were able to identify and quantify reads arising from canonical and non-canonical sgRNA. We were able to detect all canonical sgRNAs at expected abundances, with the exception of ORF10. A number of recurrent non-canonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6 ACE2+/− cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing datasets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA.
46
Citation7
0
Save
4

Variation in Human Herpesvirus 6B telomeric integration, excision and transmission between tissues and individuals

Michael Wood et al.Jun 8, 2021
Abstract Human herpesviruses 6A and 6B (HHV-6A/6B) are ubiquitous pathogens that persist lifelong in latent form and can cause severe conditions upon reactivation. They are spread by community-acquired infection of free virus (acqHHV6A/6B) and by germline transmission of inherited chromosomally- integrated HHV-6A/6B (iciHHV-6A/6B) in telomeres. We exploited a hypervariable region of the HHV- 6B genome to investigate the relationship between acquired and inherited virus and revealed predominantly maternal transmission of acqHHV-6B in families. Remarkably, we demonstrate that some copies of acqHHV-6B in saliva from healthy adults gained a telomere, indicative of integration and latency, and that the frequency of viral genome excision from telomeres in iciHHV-6B carriers is surprisingly high and varies between tissues. In addition, newly formed short telomeres generated by partial viral genome release are frequently lengthened, particularly in telomerase-expressing pluripotent cells. Consequently, iciHHV-6B carriers are mosaic for different iciHHV-6B structures, including circular extra-chromosomal forms that have the potential to reactivate. Finally, we show transmission of an HHV-6B strain from an iciHHV-6B mother to her non-iciHHV-6B son. Altogether we demonstrate that iciHHV-6B can readily transition between telomere-integrated and free virus forms.
4
Citation2
0
Save
1

ADAM17 targeting by human cytomegalovirus remodels the cell surface proteome to simultaneously regulate multiple immune pathways

Anzelika Rubina et al.Mar 16, 2023
Abstract Human cytomegalovirus (HCMV) is a major human pathogen whose life-long persistence is enabled by its remarkable capacity to systematically subvert host immune defences. In exploring the finding that HCMV infection upregulates tumor necrosis factor receptor 2 (TNFR2), a ligand for the pro-inflammatory anti-viral cytokine TNFa, we discovered the underlying mechanism was due to targeting of the protease, A Disintegrin And Metalloproteinase 17 (ADAM17). ADAM17 is the prototype ‘sheddase’, a family of proteases that cleaves other membrane-bound proteins to release biologically active ectodomains into the supernatant. HCMV impaired ADAM17 surface expression through the action of two virally-encoded proteins in its U L / b ’ region, UL148 and UL148D. Proteomic plasma membrane profiling of cells infected with a HCMV double deletion mutant for UL148 and UL148D with restored ADAM17 expression, combined with ADAM17 functional blockade, showed that HCMV stabilized the surface expression of 114 proteins (p<0.05) in an ADAM17-dependent fashion. These included known substrates of ADAM17 with established immunological functions such as TNFR2 and Jagged1, but also numerous novel host and viral targets, such as Nectin1, UL8 and UL144. Regulation of TNFα-induced cytokine responses and NK inhibition during HCMV infection were dependent on this impairment of ADAM17. We therefore identify a viral immunoregulatory mechanism in which targeting a single sheddase enables broad regulation of multiple critical surface receptors, revealing a paradigm for viral-encoded immunomodulation. Significance statement Human cytomegalovirus (HCMV) is an important pathogen, being the commonest infectious cause of brain damage to babies and the primary reason for hospital readmissions in transplant recipients. Even though HCMV induces the strongest immune responses by any human pathogen, it evades host defences and persists for life. This study describes a novel immunoregulatory strategy through which HCMV modulates multiple immune pathways simultaneously, by targeting a single host protein. HCMV UL148 and UL148D impair the maturation of the sheddase, A Disintegrin And Metalloproteinase 17, profoundly altering surface expression of numerous immunoregulatory proteins. This is the first description of viral genes targeting this pathway. Our findings may be relevant for future viral therapies and understanding the impact of HCMV in developmental biology.
1
Citation1
0
Save
3

Human cytomegalovirus protein RL1 degrades the antiviral factor SLFN11 via recruitment of the CRL4 E3 ubiquitin ligase complex

Katie Nightingale et al.May 14, 2021
Abstract Human cytomegalovirus (HCMV) is an important human pathogen and a paradigm of viral immune evasion, targeting intrinsic, innate and adaptive immunity. We have employed two novel, orthogonal multiplexed tandem mass tag-based proteomic screens to identify host proteins downregulated by viral factors expressed during the latest phases of viral infection. This approach revealed that the HIV-1 restriction factor Schlafen-11 (SLFN11) was degraded by the poorly characterised, late-expressed HCMV protein RL1, via recruitment of the Cullin4-RING E3 Ubiquitin Ligase (CRL4) complex. SLFN11 potently restricted HCMV infection, inhibiting the formation and spread of viral plaques. Overall, we show that a restriction factor previously thought only to inhibit RNA viruses additionally restricts HCMV. We define the mechanism of viral antagonism and also describe an important resource for revealing additional molecules of importance in antiviral innate immunity and viral immune evasion. Significance Statement Previous proteomic analyses of host factors targeted for downregulation by HCMV have focused on early or intermediate stages of infection. Using multiplexed proteomics, we have systematically identified viral factors that target each host protein downregulated during the latest stage of infection, after the onset of viral DNA replication. Schlafen-11 (SLFN11), an interferon-stimulated gene and restriction factor for retroviruses and certain RNA viruses, potently restricted HCMV infection. Our discovery that the late-expressed HCMV protein RL1 targets SLFN11 for proteasomal degradation provides the first evidence for a viral antagonist of this critical cellular protein. We therefore redefine SLFN11 as an important factor that targets DNA viruses as well as RNA viruses, offering novel therapeutic potential via molecules that inhibit RL1-mediated SLFN11 degradation.
3
Citation1
0
Save
0

Comparative study of two Rift Valley fever virus field strains originating from Mauritania

Mehdi Chabert et al.Dec 9, 2024
Rift Valley fever (RVF) is one of the major viral arthropod-borne diseases in Africa. In recent decades, RVF virus (RVFV), the causative agent of RVF, has been responsible for multiple outbreaks in West Africa with important consequences on human and animal health. In particular, an outbreak occurred in 2010 after heavy rains in the desertic region of Adrar, Mauritania. It was characterized by the appearance of severe clinical signs among dromedary camels. Another one occurred in 2013–2014 across Senegal and the southern part of Mauritania. In this study, we characterized two RVFV field strains isolated during these two outbreaks. The first strain, MRU25010-30, was isolated from a camel (2010) while the second, MRU2687-3, was isolated from a goat (2013). By deep-sequencing and rapid amplification of cDNA-ends by polymerase chain reaction, we successfully sequenced the complete genome of these two RVFV strains as well as the reference laboratory strain ZH548. Phylogenetic analysis showed that the two field viruses belong to two different RVFV genetic lineages. Moreover, we showed that MRU25010-30 replicates more efficiently in various in vitro cell culture models than MRU2687-3 and ZH548. In vivo , MRU25010-30 caused rapid death of BALB/c mice and proved to be more virulent than MRU2687-3, regardless of the route of inoculation (subcutaneous or intranasal). The virulence of MRU25010-30 is associated with a high viral load in the liver and serum of infected mice, while the death of mice infected with MRU2687-3 and ZH548 correlated with a high viral load in the brain. Altogether, the data presented in this study provide new avenues to unveil the molecular viral determinants that modulate RVFV virulence and replication capacity
0

Comparative study of two Rift Valley fever virus field strains circulating in Mauritania in 2010 and 2013 reveals the high virulence of the MRU25010-30 strain isolated from camel

Mehdi Chabert et al.Apr 3, 2024
Abstract Rift Valley fever (RVF) is one of the major viral arthropod-borne diseases in Africa. In recent decades, RVF virus (RVFV), the causative agent of RVF, has been responsible for multiple outbreaks in West Africa with important consequences on human and animal health. In particular, an outbreak occurred in 2010 after heavy rainfalls in the desertic region of Adrar, Mauritania. It was characterized by the appearance of severe clinical signs among dromedary camels. Another one occurred in 2013-2014 across Senegal and the southern part of Mauritania. In this study, we characterized two RVFV field strains isolated during these two outbreaks. The first strain, MRU25010-30, has been isolated in camel (2010) while the second, MRU2687-3, was isolated in goat (2013). By deep-sequencing and rapid amplification of cDNA-ends by polymerase chain reaction (RACE-PCR), we successfully sequenced the complete genome of these two RVFV strains as well as the reference laboratory strain ZH548. Phylogenetic analysis shows that the two field viruses belong to two different RVFV genetic lineages. Moreover, we show that MRU25010-30 replicates more efficiently in various in vitro cell culture models than MRU2687-3 and ZH548. In vivo , MRU25010-30 caused rapid death of BALB/c mice and proved to be more virulent than MRU2687-3, regardless of the route of inoculation (subcutaneous or intranasal). The virulence of MRU25010-30 is associated with a high viral load in the liver and serum of infected mice, while the death of mice infected with MRU2687-3 and ZH548 correlates with a high viral load in the brain. Altogether, the data presented in this study provide new avenues to unveil the molecular viral determinants that modulate RVFV virulence and replication capacity Author Summary Rift Valley fever is an arboviral zoonosis caused by Rift Valley fever virus (RVFV) belonging to the Phlebovirus genus. It poses a major risk for causing a public and animal health emergency and is a significant economic burden in many African countries. To date, our knowledge of the impact of RVFV genetic diversity on its virulence, replicative capacities and transmission by mosquitoes is limited. In this study, we fully sequenced two RVFV strains isolated in Mauritania during two distinct outbreaks (2010 and 2013) and show that they were genetically distant. Interestingly, we show that one of the strains (MRU25010-30) is able to replicate in vitro more efficiently than the other (MRU2687-3). Additionally, we show that high levels of viremia and viral load in the liver are associated with rapid death in BALB/c mice infected with MRU25010-30, whereas mice infected by MRU2687-3 tend to die later with high viral load in the brain. In conclusion, our study confirms that RVFV strains from distinct genetic lineages have different phenotypic characteristics such as virulence and replication capacity. These data provide a strong basis for further studies aimed at identifying the viral genetic determinants responsible for the observed phenotypes.
Load More