A diverse T cell repertoire is a critical component of the adaptive immune system, providing protection against invading pathogens and neoplastic changes, relying on the recognition of foreign antigens and neoantigen peptides by T cell receptors (TCRs). However, the statistical properties and function of the T cell pool in an individual, under normal physiological conditions, are poorly understood. In this study, we report a comprehensive, quantitative characterization of the T cell repertoire from over 1.9 million cells, yielding over 200,000 high quality paired αβ sequences in 5 healthy human subjects. The dataset was obtained by leveraging recent biotechnology developments in deep RNA sequencing of lymphocytes via single-cell barcoding in emulsion. We report non-random associations and non-monogamous pairing between the α and β chains, lowering the theoretical diversity of the T cell repertoire, and increasing the frequency of public clones shared among individuals. T cell clone size distributions closely followed a power law, with markedly longer tails for CD8+ cytotoxic T cells than CD4+ helper T cells. Furthermore, clonality estimates based on paired chains from single T cells were lower than that from single chain data. Taken together, these results highlight the importance of sequencing αβ pairs to accurately quantify lymphocyte receptor diversity.