TM
Tommaso Mari
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
616
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

Neuroblastoma signalling models unveil combination therapies targeting feedback-mediated resistance

Mathurin Dorel et al.Jun 14, 2021
Abstract Very high risk neuroblastoma is characterised by increased MAPK signalling, and targeting MAPK signalling is a promising therapeutic strategy. We used a deeply characterised panel of neuroblastoma cell lines and found that the sensitivity to MEK inhibitors varied drastically between these cell lines. By generating quantitative perturbation data and mathematical modelling, we determined potential resistance mechanisms. We found that negative feedbacks within MAPK signalling and to the IGF receptor mediate re-activation of MAPK signalling upon treatment in resistant cell lines. By using cell-line specific models, we predict that combinations of MEK inhibitors with RAF or IGFR inhibitors can overcome resistance, and tested these predictions experimentally. In addition, phospo-proteomics profiles confirm the cell-specific feedback effects and synergy of MEK and IGFR targeted treatements. Our study shows that a quantitative understanding of signalling and feedback mechanisms facilitated by models can help to develop and optimise therapeutic strategies, and our findings should be considered for the planning of future clinical trials introducing MEKi in the treatment of neuroblastoma.
5
Citation1
0
Save
153

Bulk and single-cell gene expression profiling of SARS-CoV-2 infected human cell lines identifies molecular targets for therapeutic intervention

Emanuel Wyler et al.May 5, 2020
Abstract The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing global health threat with more than two million infected people since its emergence in late 2019. Detailed knowledge of the molecular biology of the infection is indispensable for understanding of the viral replication, host responses, and disease progression. We provide gene expression profiles of SARS-CoV and SARS-CoV-2 infections in three human cell lines (H1299, Caco-2 and Calu-3 cells), using bulk and single-cell transcriptomics. Small RNA profiling showed strong expression of the immunity and inflammation-associated microRNA miRNA-155 upon infection with both viruses. SARS-CoV-2 elicited approximately two-fold higher stimulation of the interferon response compared to SARS-CoV in the permissive human epithelial cell line Calu-3, and induction of cytokines such as CXCL10 or IL6. Single cell RNA sequencing data showed that canonical interferon stimulated genes such as IFIT2 or OAS2 were broadly induced, whereas interferon beta (IFNB1) and lambda (IFNL1-4) were expressed only in a subset of infected cells. In addition, temporal resolution of transcriptional responses suggested interferon regulatory factors (IRFs) activities precede that of nuclear factor-κB (NF-κB). Lastly, we identified heat shock protein 90 (HSP90) as a protein relevant for the infection. Inhibition of the HSP90 charperone activity by Tanespimycin/17-N-allylamino-17-demethoxygeldanamycin (17-AAG) resulted in a reduction of viral replication, and of TNF and IL1B mRNA levels. In summary, our study established in vitro cell culture models to study SARS-CoV-2 infection and identified HSP90 protein as potential drug target for therapeutic intervention of SARS-CoV-2 infection.
1

In vitro Kinase-to-Phosphosite database (iKiP-DB) predicts kinase activity in phosphoproteomic datasets

Tommaso Mari et al.Jan 14, 2022
ABSTRACT Phosphoproteomics routinely quantifies changes in the levels of thousands of phosphorylation sites, but functional analysis of such data remains a major challenge. While databases like PhosphoSitePlus contain information about many phosphorylation sites, the vast majority of known sites are not assigned to any protein kinase. Assigning changes in the phosphoproteome to the activity of individual kinases therefore remains a key challenge.. A recent large-scale study systematically identified in vitro substrates for most human protein kinases. Here, we reprocessed and filtered these data to generate an in vitro Kinase-to-Phosphosite database (iKiP-DB). We show that iKiP-DB can accurately predict changes in kinase activity in published phosphoproteomic datasets for both well-studied and poorly characterized kinases. We apply iKiP-DB to a newly generated phosphoproteomic analysis of SARS-CoV-2 infected human lung epithelial cells and provide evidence for coronavirus-induced changes in host cell kinase activity. In summary, we show that iKiP-DB is widely applicable to facilitate the functional analysis of phosphoproteomic datasets.