BH
Brian Herb
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
University of Maryland, Baltimore, University of Illinois Urbana-Champaign, Johns Hopkins Medicine
+ 3 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
17
(88% Open Access)
Cited by:
439
h-index:
16
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types

Zizhen Yao et al.May 6, 2020
+80
F
H
Z
Abstract Single cell transcriptomics has transformed the characterization of brain cell identity by providing quantitative molecular signatures for large, unbiased samples of brain cell populations. With the proliferation of taxonomies based on individual datasets, a major challenge is to integrate and validate results toward defining biologically meaningful cell types. We used a battery of single-cell transcriptome and epigenome measurements generated by the BRAIN Initiative Cell Census Network (BICCN) to comprehensively assess the molecular signatures of cell types in the mouse primary motor cortex (MOp). We further developed computational and statistical methods to integrate these multimodal data and quantitatively validate the reproducibility of the cell types. The reference atlas, based on more than 600,000 high quality single-cell or -nucleus samples assayed by six molecular modalities, is a comprehensive molecular account of the diverse neuronal and non-neuronal cell types in MOp. Collectively, our study indicates that the mouse primary motor cortex contains over 55 neuronal cell types that are highly replicable across analysis methods, sequencing technologies, and modalities. We find many concordant multimodal markers for each cell type, as well as thousands of genes and gene regulatory elements with discrepant transcriptomic and epigenomic signatures. These data highlight the complex molecular regulation of brain cell types and will directly enable design of reagents to target specific MOp cell types for functional analysis.
0
Citation45
0
Save
207

A multimodal cell census and atlas of the mammalian primary motor cortex

Ricky Adkins et al.Oct 13, 2023
+254
S
A
R
ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
207
Citation18
0
Save
1

gEAR: gene Expression Analysis Resource portal for community-driven, multi-omic data exploration

Joshua Orvis et al.Oct 24, 2023
+19
J
B
J
ABSTRACT The gEAR portal (gene Expression Analysis Resource, umgear.org) is an open access community-driven tool for multi-omic and multi-species data visualization, analysis and sharing. The gEAR supports visualization of multiple RNA-seq data types (bulk, sorted, single cell/nucleus) and epigenomics data, from multiple species, time points and tissues in a single-page, user-friendly browsable format. An integrated scRNA-seq workbench provides access to raw data of scRNA-seq datasets for de novo analysis, as well as marker-gene and cluster comparisons of pre-assigned clusters. Users can upload, view, analyze and privately share their own data in the context of previously published datasets. Short, permanent URLs can be generated for dissemination of individual or collections of datasets in published manuscripts. While the gEAR is currently curated for auditory research with over 90 high-value datasets organized in thematic profiles, the gEAR also supports the BRAIN initiative (via nemoanalytics.org) and is easily adaptable for other research domains.
1
Paper
Citation10
0
Save
1

The BRAIN Initiative Cell Census Network Data Ecosystem: A User’s Guide

Michael Hawrylycz et al.Oct 24, 2023
+96
P
M
M
Abstract Characterizing cellular diversity at different levels of biological organization across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also required to manipulate cell types in controlled ways, and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data generating centers, data archives and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain and demonstration of prototypes for human and non-human primate (NHP) brains. Here, we provide a guide to the cellular and spatial approaches employed, and to accessing and using the BICCN data and its extensive resources, including the BRAIN Cell Data Center (BCDC) which serves to manage and integrate data across the ecosystem. We illustrate the power of the BICCN data ecosystem through vignettes highlighting several BICCN analysis and visualization tools. Finally, we present emerging standards that have been developed or adopted by the BICCN toward FAIR (Wilkinson et al. 2016a) neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the exploration and analysis of cell types in the brain.
4

Single-nucleus RNA-seq reveals dysregulation of striatal cell identity due to Huntington’s disease mutations

Sonia Malaiya et al.Oct 24, 2023
+6
B
M
S
ABSTRACT Huntington’s disease (HD) is a dominantly inherited neurodegenerative disorder caused by a trinucleotide expansion in exon 1 of the huntingtin ( Htt ) gene. Cell death in HD occurs primarily in striatal medium spiny neurons (MSNs), but the involvement of specific MSN subtypes and of other striatal cell types remains poorly understood. To gain insight into cell type-specific disease processes, we studied the nuclear transcriptomes of 4,524 cells from the striatum of a genetically precise knock-in mouse model of the HD mutation, Htt Q175/+ , and from wildtype controls. We used 14-15-month-old mice, a time point roughly equivalent to an early stage of symptomatic human disease. Cell type distributions indicated selective loss of D2 MSNs and increased microglia in aged Htt Q175/+ mice. Thousands of differentially expressed genes were distributed across most striatal cell types, including transcriptional changes in glial populations that are not apparent from RNA-seq of bulk tissue. Reconstruction of cell typespecific transcriptional networks revealed a striking pattern of bidirectional dysregulation for many cell type-specific genes. Typically, these genes were repressed in their primary cell type, yet de-repressed in other striatal cell types. Integration with existing epigenomic and transcriptomic data suggest that partial loss-of-function of the Polycomb Repressive Complex 2 (PRC2) may underlie many of these transcriptional changes, leading to deficits in the maintenance of cell identity across virtually all cell types in the adult striatum.
4
Citation4
0
Save
5

Single-cell genomics reveals region-specific developmental trajectories underlying neuronal diversity in the human hypothalamus

Brian Herb et al.Oct 24, 2023
+9
A
H
B
Abstract The development and diversity of neuronal subtypes in the human hypothalamus has been insufficiently characterized. We sequenced the transcriptomes of 40,927 cells from the prenatal human hypothalamus spanning from 6 to 25 gestational weeks and 25,424 mature neurons in regions of the adult human hypothalamus, revealing a temporal trajectory from proliferative stem cell populations to mature neurons and glia. Developing hypothalamic neurons followed branching trajectories leading to 170 transcriptionally distinct neuronal subtypes in ten hypothalamic nuclei in the adult. The uniqueness of hypothalamic neuronal lineages was examined developmentally by comparing excitatory lineages present in cortex and inhibitory lineages in ganglionic eminence from the same individuals, revealing both distinct and shared drivers of neuronal maturation across the human forebrain. Cross-species comparisons to the mouse hypothalamus identified human-specific POMC populations expressing unique combinations of transcription factors and neuropeptides. These results provide the first comprehensive transcriptomic view of human hypothalamus development at cellular resolution. One-Sentence Summary Using single-cell genomics, we reconstructed the developmental lineages by which precursor populations give rise to 170 distinct neuronal subtypes in the human hypothalamus.
5
Citation3
0
Save
9

Matrix and analysis metadata standards (MAMS) to facilitate harmonization and reproducibility of single-cell data

Yichen Wang et al.Oct 24, 2023
+13
W
I
Y
A large number of genomic and imaging datasets are being produced by consortia that seek to characterize healthy and disease tissues at single-cell resolution. While much effort has been devoted to capturing information related to biospecimen information and experimental procedures, the metadata standards that describe data matrices and the analysis workflows that produced them are relatively lacking. Detailed metadata schema related to data analysis are needed to facilitate sharing and interoperability across groups and to promote data provenance for reproducibility. To address this need, we developed the Matrix and Analysis Metadata Standards (MAMS) to serve as a resource for data coordinating centers and tool developers. We first curated several simple and complex "use cases" to characterize the types of feature-observation matrices (FOMs), annotations, and analysis metadata produced in different workflows. Based on these use cases, metadata fields were defined to describe the data contained within each matrix including those related to processing, modality, and subsets. Suggested terms were created for the majority of fields to aid in harmonization of metadata terms across groups. Additional provenance metadata fields were also defined to describe the software and workflows that produced each FOM. Finally, we developed a simple list-like schema that can be used to store MAMS information and implemented in multiple formats. Overall, MAMS can be used as a guide to harmonize analysis-related metadata which will ultimately facilitate integration of datasets across tools and consortia. MAMS specifications, use cases, and examples can be found at https://github.com/single-cell-mams/mams/.
9
Citation2
0
Save
0

The single-cell opioid responses in the context of HIV (SCORCH) consortium

Seth Ament et al.Sep 11, 2024
+73
M
R
S
Abstract Substance use disorders (SUD) and drug addiction are major threats to public health, impacting not only the millions of individuals struggling with SUD, but also surrounding families and communities. One of the seminal challenges in treating and studying addiction in human populations is the high prevalence of co-morbid conditions, including an increased risk of contracting a human immunodeficiency virus (HIV) infection. Of the ~15 million people who inject drugs globally, 17% are persons with HIV. Conversely, HIV is a risk factor for SUD because chronic pain syndromes, often encountered in persons with HIV, can lead to an increased use of opioid pain medications that in turn can increase the risk for opioid addiction. We hypothesize that SUD and HIV exert shared effects on brain cell types, including adaptations related to neuroplasticity, neurodegeneration, and neuroinflammation. Basic research is needed to refine our understanding of these affected cell types and adaptations. Studying the effects of SUD in the context of HIV at the single-cell level represents a compelling strategy to understand the reciprocal interactions among both conditions, made feasible by the availability of large, extensively-phenotyped human brain tissue collections that have been amassed by the Neuro-HIV research community. In addition, sophisticated animal models that have been developed for both conditions provide a means to precisely evaluate specific exposures and stages of disease. We propose that single-cell genomics is a uniquely powerful technology to characterize the effects of SUD and HIV in the brain, integrating data from human cohorts and animal models. We have formed the Single-Cell Opioid Responses in the Context of HIV (SCORCH) consortium to carry out this strategy.
0
Citation1
0
Save
0

Transcriptional signatures of fentanyl use in the mouse ventral tegmental area

Megan Fox et al.May 29, 2024
+4
A
A
M
Abstract Synthetic opioids such as fentanyl contribute to the vast majority of opioid-related overdose deaths, but fentanyl use remains broadly understudied. Like other substances with misuse potential, opioids cause lasting molecular adaptations to brain reward circuits, including neurons in the ventral tegmental area (VTA). The VTA contains numerous cell types that play diverse roles in opioid use and relapse, however it is unknown how fentanyl experience alters the transcriptional landscape in specific subtypes. Here, we performed single nuclei RNA sequencing to study transcriptional programs in fentanyl experienced mice. Male and female C57/BL6 mice self-administered intravenous fentanyl (1.5 µg/kg/infusion) or saline for 10 days. After 24 hr abstinence, VTA nuclei were isolated and prepared for sequencing on the 10X platform. We identified different patterns of gene expression across cell types. In dopamine neurons, we found enrichment of genes involved in growth hormone signaling. In dopamine-glutamate-GABA combinatorial neurons, and some GABA neurons, we found enrichment of genes involved in Pi3k-Akt signaling. In glutamate neurons, we found enrichment of genes involved in cholinergic signaling. We identified transcriptional regulators for the differentially expressed genes in each neuron cluster, including downregulation of transcriptional repressor Bcl6, and upregulation of Wnt signaling partner Tcf4. We also compared the fentanyl-induced gene expression changes identified in mouse VTA with a published rat dataset in bulk VTA, and found overlap in genes related to GABAergic signaling and extracellular matrix interaction. Together, we provide a comprehensive picture of how fentanyl self-administration alters the transcriptional landscape of the mouse VTA, that serves for the foundation for future mechanistic studies.
5

Cochlear organoids reveal epigenetic and transcriptional programs of postnatal hair cell differentiation from supporting cells

Gurmannat Kalra et al.Oct 24, 2023
+10
D
D
G
ABSTRACT We explored the transcriptional and epigenetic programs underlying the differentiation of hair cells from postnatal progenitor cells in cochlear organoids. Heterogeneity in the cells including cells with the transcriptional signatures of mature hair cells allowed a full picture of possible cell fates. Construction of trajectories identified Lgr5+ cells as progenitors for hair cells and the genomic data revealed gene regulatory networks leading to hair cells. We validated these networks, demonstrating dynamic changes both in expression and predicted binding sites of these transcription factors during organoid differentiation. We identified known regulators of hair cell development, Atoh1, Pou4f3 , and Gfi1 , and predicted novel regulatory factors, Tcf4 , an E-protein and heterodimerization partner of Atoh1, and Ddit3 , a CCAAT/enhancer-binding protein (C/EBP) that represses Hes1 and activates transcription of Wnt signaling-related genes. Deciphering the signals for hair cell regeneration from mammalian cochlear supporting cells reveals candidates for HC regeneration which is limited in the adult.
5
Paper
Citation1
0
Save
Load More