JO
Julia Osteen
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(81% Open Access)
Cited by:
1,218
h-index:
15
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Comparative cellular analysis of motor cortex in human, marmoset and mouse

Trygve Bakken et al.Oct 6, 2021
Abstract The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals 1 . Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch–seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.
0
Citation478
0
Save
0

A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex

Zizhen Yao et al.Oct 6, 2021
Abstract Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain 1–3 . With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion. We developed computational and statistical methods to integrate multimodal data and quantitatively validate cell-type reproducibility. The resulting reference atlas—containing over 56 neuronal cell types that are highly replicable across analysis methods, sequencing technologies and modalities—is a comprehensive molecular and genomic account of the diverse neuronal and non-neuronal cell types in the mouse primary motor cortex. The atlas includes a population of excitatory neurons that resemble pyramidal cells in layer 4 in other cortical regions 4 . We further discovered thousands of concordant marker genes and gene regulatory elements for these cell types. Our results highlight the complex molecular regulation of cell types in the brain and will directly enable the design of reagents to target specific cell types in the mouse primary motor cortex for functional analysis.
0
Citation228
0
Save
0

An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types

Zizhen Yao et al.Mar 2, 2020
Abstract Single cell transcriptomics has transformed the characterization of brain cell identity by providing quantitative molecular signatures for large, unbiased samples of brain cell populations. With the proliferation of taxonomies based on individual datasets, a major challenge is to integrate and validate results toward defining biologically meaningful cell types. We used a battery of single-cell transcriptome and epigenome measurements generated by the BRAIN Initiative Cell Census Network (BICCN) to comprehensively assess the molecular signatures of cell types in the mouse primary motor cortex (MOp). We further developed computational and statistical methods to integrate these multimodal data and quantitatively validate the reproducibility of the cell types. The reference atlas, based on more than 600,000 high quality single-cell or -nucleus samples assayed by six molecular modalities, is a comprehensive molecular account of the diverse neuronal and non-neuronal cell types in MOp. Collectively, our study indicates that the mouse primary motor cortex contains over 55 neuronal cell types that are highly replicable across analysis methods, sequencing technologies, and modalities. We find many concordant multimodal markers for each cell type, as well as thousands of genes and gene regulatory elements with discrepant transcriptomic and epigenomic signatures. These data highlight the complex molecular regulation of brain cell types and will directly enable design of reagents to target specific MOp cell types for functional analysis.
0
Citation62
0
Save
207

A multimodal cell census and atlas of the mammalian primary motor cortex

Ricky Adkins et al.Oct 21, 2020
ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
207
Citation18
0
Save
1

DNA Methylation Atlas of the Mouse Brain at Single-Cell Resolution

Hanqing Liu et al.Apr 30, 2020
Summary Mammalian brain cells are remarkably diverse in gene expression, anatomy, and function, yet the regulatory DNA landscape underlying this extensive heterogeneity is poorly understood. We carried out a comprehensive assessment of the epigenomes of mouse brain cell types by applying single nucleus DNA methylation sequencing to profile 110,294 nuclei from 45 regions of the mouse cortex, hippocampus, striatum, pallidum, and olfactory areas. We identified 161 cell clusters with distinct spatial locations and projection targets. We constructed taxonomies of these epigenetic types, annotated with signature genes, regulatory elements, and transcription factors. These features indicate the potential regulatory landscape supporting the assignment of putative cell types, and reveal repetitive usage of regulators in excitatory and inhibitory cells for determining subtypes. The DNA methylation landscape of excitatory neurons in the cortex and hippocampus varied continuously along spatial gradients. Using this deep dataset, an artificial neural network model was constructed that precisely predicts single neuron cell-type identity and brain area spatial location. Integration of high-resolution DNA methylomes with single-nucleus chromatin accessibility data allowed prediction of high-confidence enhancer-gene interactions for all identified cell types, which were subsequently validated by cell-type-specific chromatin conformation capture experiments. By combining multi-omic datasets (DNA methylation, chromatin contacts, and open chromatin) from single nuclei and annotating the regulatory genome of hundreds of cell types in the mouse brain, our DNA methylation atlas establishes the epigenetic basis for neuronal diversity and spatial organization throughout the mouse brain.
1
Citation10
0
Save
0

Brain-wide correspondence of neuronal epigenomics and distant projections

Jingtian Zhou et al.Dec 13, 2023
Abstract Single-cell analyses parse the brain’s billions of neurons into thousands of ‘cell-type’ clusters residing in different brain structures 1 . Many cell types mediate their functions through targeted long-distance projections allowing interactions between specific cell types. Here we used epi-retro-seq 2 to link single-cell epigenomes and cell types to long-distance projections for 33,034 neurons dissected from 32 different regions projecting to 24 different targets (225 source-to-target combinations) across the whole mouse brain. We highlight uses of these data for interrogating principles relating projection types to transcriptomics and epigenomics, and for addressing hypotheses about cell types and connections related to genetics. We provide an overall synthesis with 926 statistical comparisons of discriminability of neurons projecting to each target for every source. We integrate this dataset into the larger BRAIN Initiative Cell Census Network atlas, composed of millions of neurons, to link projection cell types to consensus clusters. Integration with spatial transcriptomics further assigns projection-enriched clusters to smaller source regions than the original dissections. We exemplify this by presenting in-depth analyses of projection neurons from the hypothalamus, thalamus, hindbrain, amygdala and midbrain to provide insights into properties of those cell types, including differentially expressed genes, their associated cis -regulatory elements and transcription-factor-binding motifs, and neurotransmitter use.
0
Citation8
-1
Save
38

A comparative atlas of single-cell chromatin accessibility in the human brain

Yang Li et al.Nov 10, 2022
Abstract The human brain contains an extraordinarily diverse set of neuronal and glial cell types. Recent advances in single cell transcriptomics have begun to delineate the cellular heterogeneity in different brain regions, but the transcriptional regulatory programs responsible for the identity and function of each brain cell type remain to be defined. Here, we carried out single nucleus ATAC-seq analysis to probe the open chromatin landscape from over 1.1 million cells in 42 brain regions of three neurotypical adult donors. Integrative analysis of the resulting data identified 107 distinct cell types and revealed the cell-type-specific usage of 544,735 candidate cis-regulatory DNA elements (cCREs) in the human genome. Nearly 1/3 of them displayed sequence conservation as well as chromatin accessibility in the mouse brain. On the other hand, nearly 40% cCREs were human specific, with chromatin accessibility associated with species-restricted gene expression. Interestingly, these human specific cCREs were enriched for distinct families of retrotransposable elements, which displayed cell-type-specific chromatin accessibility. We uncovered strong associations between specific brain cell types and neuropsychiatric disorders. We futher developed deep learning models to predict regulatory function of non-coding disease risk variants.
38
Citation4
0
Save
0

Polycomb-mediated repression compensates for loss of postnatal DNA methylation in excitatory neurons

Junhao Li et al.Dec 20, 2019
Epigenetic modifications of DNA regulate gene expression throughout the lifespan in neurons. Two major epigenetic pathways of repression, DNA methylation and Polycomb repressive complex 2 (PRC2) mediated gene silencing, regulate neuronal physiology and function, but their relative contributions are unknown. We found that conditional loss of the de novo DNA methyltransferase Dnmt3a in mouse excitatory neurons altered expression of synapse-related genes, impaired the maturation of postsynaptic dendritic spines and dampened neuronal excitability. These phenotypes were accompanied by working memory and social interest deficits. To elucidate the epigenetic mechanisms, we performed deep sequencing of DNA methylation, transcription, and chromatin modifications in cortical excitatory neurons. Loss of Dnmt3a abolished postnatal accumulation of CG and non-CG DNA methylation, leaving neurons with an unmethylated, fetal-like epigenomic pattern at ~140,000 genomic regions. The PRC2 associated histone modification H3K27me3 increased at many of these sites, partially compensating for the loss of DNA methylation. Our results suggest a complex interaction between two key modes of epigenetic repression of gene expression during brain development that supports cognitive function in adulthood.
Load More