MV
Marc Vidal
Author with expertise in Analysis of Gene Interaction Networks
Dana-Farber Cancer Institute, Harvard University, Boston VA Research Institute
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
20
(60% Open Access)
Cited by:
22
h-index:
115
/
i10-index:
244
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
33

A map of binary SARS-CoV-2 protein interactions implicates host immune regulation and ubiquitination

Dae-Kyum Kim et al.Oct 24, 2023
+35
C
B
D
ABSTRACT Key steps in viral propagation, immune suppression, and pathology are mediated by direct, binary, physical interactions between viral and host proteins. To understand the biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we generated an unbiased systematic map of binary interactions between viral and host proteins, complementing previous co-complex association maps by conveying more direct mechanistic understanding and potentially enabling targeted disruption of direct interactions. To this end, we deployed two parallel strategies, identifying 205 virus-host and 27 intraviral binary interactions amongst 171 host and 19 viral proteins, and confirming high quality of these interactions via a calibrated orthogonal assay. Host proteins interacting with SARS-CoV-2 proteins are enriched in various cellular processes, including immune signaling and inflammation, protein ubiquitination, and membrane trafficking. Specific subnetworks provide new hypotheses related to viral modulation of host protein homeostasis and T-cell regulation. The binary virus-host protein interactions we identified can now be prioritized as targets for therapeutic intervention. More generally, we provide a resource of systematic maps describing which SARS-CoV-2 and human proteins interact directly.
33
Paper
Citation11
0
Save
33

Binary interactome models of inner- versus outer-complexome organisation

L. Lambourne et al.Oct 24, 2023
+36
Y
A
L
Summary Hundreds of different protein complexes that perform important functions across all cellular processes, collectively comprising the “complexome” of an organism, have been identified 1 . However, less is known about the fraction of the interactome that exists outside the complexome, in the “outer-complexome”. To investigate features of “inner”- versus outer-complexome organisation in yeast, we generated a high-quality atlas of binary protein-protein interactions (PPIs), combining three previous maps 2–4 and a new reference all-by-all binary interactome map. A greater proportion of interactions in our map are in the outer-complexome, in comparison to those found by affinity purification followed by mass spectrometry 5–7 or in literature curated datasets 8–11 . In addition, recent advances in deep learning predictions of PPI structures 12 mirror the existing experimentally resolved structures in being largely focused on the inner complexome and missing most interactions in the outer-complexome. Our new PPI network suggests that the outer-complexome contains considerably more PPIs than the inner-complexome, and integration with functional similarity networks 13–15 reveals that interactions in the inner-complexome are highly detectable and correspond to pairs of proteins with high functional similarity, while proteins connected by more transient, harder-to-detect interactions in the outer-complexome, exhibit higher functional heterogeneity.
33
Citation5
0
Save
4

A quantitative mapping approach to identify direct interactions within complexomes

Philipp Trepte et al.Oct 24, 2023
+16
S
C
P
ABSTRACT Complementary methods are required to fully characterize all protein complexes, or the complexome, of a cell. Affinity purification coupled to mass-spectrometry (AP-MS) can identify the composition of complexes at proteome-scale. However, information on direct contacts between subunits is often lacking. In contrast, solving the 3D structure of protein complexes can provide this information, but structural biology techniques are not yet scalable for systematic, proteome-wide efforts. Here, we optimally combine two orthogonal high-throughput binary interaction assays, LuTHy and N2H, and demonstrate that their quantitative readouts can be used to differentiate direct interactions from indirect associations within multiprotein complexes. We also show that LuTHy allows accurate distance measurements between proteins in live cells and apply these findings to study the impact of the polyglutamine expansion mutation on the structurally unresolved N-terminal domain of Huntingtin. Thus, we present a new framework based on quantitative interaction assays to complement structural biology and AP-MS techniques, which should help to provide first-approximation contact maps of multiprotein complexes at proteome-scale. Graphical Abstract
53

Next-generation large-scale binary protein interaction network for Drosophila

Hong-Wen Tang et al.Oct 24, 2023
+37
Y
K
H
Abstract Generating reference maps of the interactome networks underlying most cellular functions can greatly illuminate genetic studies by providing a protein-centric approach to finding new components of existing pathways, complexes, and processes. Here, we applied state-of-the-art experimental and bioinformatics methods to identify high-confidence binary protein-protein interactions (PPIs) for Drosophila melanogaster . We performed four all-by-all yeast two-hybrid (Y2H) screens of >10,000 Drosophila proteins, resulting in the ‘FlyBi’ dataset of 8,723 PPIs among 2,939 proteins. As part of this effort, we tested subsets of our data and data from previous PPI datasets using an orthogonal assay, which allowed us to normalize data quality across datasets. Next, we integrated our FlyBi data with previous PPI data, resulting in an expanded, high-confidence binary Drosophila reference interaction network, DroRI, comprising 17,232 interactions among 6,511 proteins. These data are accessible through the Molecular Interaction Search Tool (MIST) and other databases. To assess the utility of the PPI resource, we used novel interactions from the FlyBi dataset to generate an autophagy interaction network that we validated in vivo using two different autophagy-related assays. We found that deformed wings ( dwg ) encodes a protein that is both a regulator and a target of autophagy. Altogether, the resources generated in this project provide a strong foundation for building high-confidence new hypotheses regarding protein networks and function.
53
Citation2
0
Save
1

Expanding the HDAC druggable landscape beyond enzymatic activity

Julien Olivet et al.Oct 24, 2023
+47
S
S
J
ABSTRACT Enzymatic pockets such as those of histone deacetylases (HDACs) are among the most favored targets for drug development. However, enzymatic inhibitors often exhibit low selectivity and high toxicity due to targeting multiple enzyme paralogs, which are often involved in distinct multisubunit complexes. Here, we report the discovery and characterization of a non-enzymatic small molecule inhibitor of HDAC transcriptional repression functions with comparable anti-tumor activity to the enzymatic HDAC inhibitor Vorinostat, and anti-psychedelic activity of an HDAC2 knockout in vivo . We highlight that these phenotypes are achieved while modulating the expression of 20- and 80-fold fewer genes than enzymatic and genetic inhibition in the respective models. Thus, by achieving the same biological outcomes as established therapeutics while impacting a dramatically smaller number of genes, inhibitors of protein-protein interactions can offer important advantages in improving the selectivity of epigenetic modulators. GRAPHICAL ABSTRACT
1
Citation1
0
Save
0

A comprehensive two-hybrid analysis to explore the L. pneumophila effector-effector interactome

Harley Mount et al.May 28, 2024
+14
D
M
H
Legionella pneumophila uses over 300 translocated effector proteins to rewire host cells during infection and create a replicative niche for intracellular growth. To date, several studies have identified L. pneumophila effectors that indirectly and directly regulate the activity of other effectors, providing an additional layer of regulatory complexity. L. pneumophila has the largest contingent of a new class of effectors, so called "metaeffectors" that directly regulate the activity of other effectors in the host. A defining quality of metaeffectors is the direct, physical interaction of the metaeffector with its cognate target effector. Metaeffectors identification to date has depended on phenotypes in heterologous systems, experimental serendipity and they represent only one class of physical interactions between effectors. Using a multiplexed, sequence-based yeast two-hybrid technology we screened the entire L. pneumophila effector proteome and components of the Dot/Icm type IV secretion system for protein-protein interactions (>167,000 protein combinations). Our screen captured 52 protein interactions, including 8 known and 44 novel protein interactions. Most notably, we identified ten novel effector-effector interactions, doubling the number of known effector-effector interactions.
0

Network-based prediction of protein interactions

I. Kovács et al.May 6, 2020
+10
K
K
I
As biological function emerges through interactions between a cell's molecular constituents, understanding cellular mechanisms requires us to catalogue all physical interactions between proteins. Despite spectacular advances in high-throughput mapping, the number of missing human protein-protein interactions (PPIs) continues to exceed the experimentally documented interactions. Computational tools that exploit structural, sequence or network topology information are increasingly used to fill in the gap, using the patterns of the already known interactome to predict undetected, yet biologically relevant interactions. Such network-based link prediction tools rely on the Triadic Closure Principle (TCP), stating that two proteins likely interact if they share multiple interaction partners. TCP is rooted in social network analysis, namely the observation that the more common friends two individuals have, the more likely that they know each other. Here, we offer direct empirical evidence across multiple datasets and organisms that, despite its dominant use in biological link prediction, TCP is not valid for most protein pairs. We show that this failure is fundamental - TCP violates both structural constraints and evolutionary processes. This understanding allows us to propose a link prediction principle, consistent with both structural and evolutionary arguments, that predicts yet uncovered protein interactions based on paths of length three (L3). A systematic computational cross-validation shows that the L3 principle significantly outperforms existing link prediction methods. To experimentally test the L3 predictions, we perform both large-scale high-throughput and pairwise tests, finding that the predicted links test positively at the same rate as previously known interactions, suggesting that most (if not all) predicted interactions are real. Combining L3 predictions with experimental tests provided new interaction partners of FAM161A, a protein linked to retinitis pigmentosa, offering novel insights into the molecular mechanisms that lead to the disease. Because L3 is rooted in a fundamental biological principle, we expect it to have a broad applicability, enabling us to better understand the emergence of biological function under both healthy and pathological conditions.
0

Expanding the Atlas of Functional Missense Variation for Human Genes

Jochen Weile et al.May 7, 2020
+18
A
S
J
Although we now routinely sequence human genomes, we can confidently identify only a fraction of the sequence variants that have a functional impact. Here we developed a deep mutational scanning framework that produces exhaustive maps for human missense variants by combining random codon-mutagenesis and multiplexed functional variation assays with computational imputation and refinement. We applied this framework to four proteins corresponding to six human genes: UBE2I (encoding SUMO E2 conjugase), SUMO1 (small ubiquitin-like modifier), TPK1 (thiamin pyrophosphokinase), and CALM1/2/3 (three genes encoding the protein calmodulin). The resulting maps recapitulate known protein features, and confidently identify pathogenic variation. Assays potentially amenable to deep mutational scanning are already available for 57% of human disease genes, suggesting that DMS could ultimately map functional variation for all human disease genes.
0

ORF Capture-Seq: a versatile method for targeted identification of full-length isoforms

Gloria Sheynkman et al.May 6, 2020
+9
E
K
G
Most human protein-coding genes are expressed as multiple isoforms. This in turn greatly expands the functional repertoire of the encoded proteome. While at least one reliable open reading frame (ORF) model has been assigned for every gene, the majority of alternative isoforms remains uncharacterized experimentally. This is primarily due to: i) vast differences of overall levels between different isoforms expressed from common genes, and ii) the difficulty of obtaining contiguous full-length ORF sequences. Here, we present ORF Capture-Seq (OCS), a flexible and cost-effective method that addresses both challenges for targeted full-length isoform sequencing applications using collections of cloned ORFs as probes. As proof-of-concept, we show that an OCS pipeline focused on genes coding for transcription factors increases isoform detection by an order of magnitude, compared to unenriched sample. In short, OCS enables rapid discovery of isoforms from custom-selected genes and will allow mapping of the full set of human isoforms at reasonable cost.
0

Maximizing binary interactome mapping with a minimal number of assays

Soon Choi et al.May 7, 2020
+21
P
J
S
Complementary assays are required to comprehensively map complex biological entities such as genomes, proteomes and interactome networks. However, how various assays can be optimally combined to approach completeness while maintaining high precision often remains unclear. Here, we propose a framework for binary protein-protein interaction (PPI) mapping based on optimally combining assays and/or assay versions to maximize detection of true positive interactions, while avoiding detection of random protein pairs. We have engineered a novel NanoLuc two-hybrid (N2H) system that integrates 12 different versions, differing by protein expression systems and tagging configurations. The resulting union of N2H versions recovers as many PPIs as 10 distinct assays combined. Thus, to further improve PPI mapping, developing alternative versions of existing assays might be as productive as designing completely new assays. Our findings should be applicable to systematic mapping of other biological landscapes.
Load More