AH
Arjan Hillebrand
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(60% Open Access)
Cited by:
2,182
h-index:
60
/
i10-index:
144
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Good practice for conducting and reporting MEG research

Joachim Groß et al.Oct 6, 2012
+12
G
S
J
Magnetoencephalographic (MEG) recordings are a rich source of information about the neural dynamics underlying cognitive processes in the brain, with excellent temporal and good spatial resolution. In recent years there have been considerable advances in MEG hardware developments and methods. Sophisticated analysis techniques are now routinely applied and continuously improved, leading to fascinating insights into the intricate dynamics of neural processes. However, the rapidly increasing level of complexity of the different steps in a MEG study make it difficult for novices, and sometimes even for experts, to stay aware of possible limitations and caveats. Furthermore, the complexity of MEG data acquisition and data analysis requires special attention when describing MEG studies in publications, in order to facilitate interpretation and reproduction of the results. This manuscript aims at making recommendations for a number of important data acquisition and data analysis steps and suggests details that should be specified in manuscripts reporting MEG studies. These recommendations will hopefully serve as guidelines that help to strengthen the position of the MEG research community within the field of neuroscience, and may foster discussion in order to further enhance the quality and impact of MEG research.
0

Frequency-dependent functional connectivity within resting-state networks: An atlas-based MEG beamformer solution

Arjan Hillebrand et al.Nov 10, 2011
+2
J
G
A
The brain consists of functional units with more-or-less specific information processing capabilities, yet cognitive functions require the co-ordinated activity of these spatially separated units. Magnetoencephalography (MEG) has the temporal resolution to capture these frequency-dependent interactions, although, due to volume conduction and field spread, spurious estimates may be obtained when functional connectivity is estimated on the basis of the extra-cranial recordings directly. Connectivity estimates on the basis of reconstructed sources may similarly be affected by biases introduced by the source reconstruction approach. Here we propose an analysis framework to reliably determine functional connectivity that is based around two main ideas: (i) functional connectivity is computed for a set of atlas-based ROIs in anatomical space that covers almost the entire brain, aiding the interpretation of MEG functional connectivity/network studies, as well as the comparison with other modalities; (ii) volume conduction and similar bias effects are removed by using a functional connectivity estimator that is insensitive to these effects, namely the Phase Lag Index (PLI). Our analysis approach was applied to eyes-closed resting-state MEG data for thirteen healthy participants. We first demonstrate that functional connectivity estimates based on phase coherence, even at the source-level, are biased due to the effects of volume conduction and field spread. In contrast, functional connectivity estimates based on PLI are not affected by these biases. We then looked at mean PLI, or weighted degree, over areas and subjects and found significant mean connectivity in three (alpha, beta, gamma) of the five (including theta and delta) classical frequency bands tested. These frequency-band dependent patterns of resting-state functional connectivity were distinctive; with the alpha and beta band connectivity confined to posterior and sensorimotor areas respectively, and with a generally more dispersed pattern for the gamma band. Generally, these patterns corresponded closely to patterns of relative source power, suggesting that the most active brain regions are also the ones that are most-densely connected. Our results reveal for the first time, using an analysis framework that enables the reliable characterisation of resting-state dynamics in the human brain, how resting-state networks of functionally connected regions vary in a frequency-dependent manner across the cortex.
0

A Quantitative Assessment of the Sensitivity of Whole-Head MEG to Activity in the Adult Human Cortex

Arjan Hillebrand et al.Jul 1, 2002
G
A
MagnetoEncephaloGraphy (MEG) relies on the detection of cortical current flow by measurement of the associated magnetic field outside the head. The amplitude of this magnetic field depends strongly on the depth of the electrical brain activity. Additionally, radially orientated sources are magnetically silent in a concentrically homogeneous volume conductor, giving rise to the anecdotal assumptions that MEG is insensitive to both deep and gyral sources. Utilising cortical surfaces extracted from Magnetic Resonance Images (MRIs) of two adult brains we constructed all possible single source elements and examined the proportion of active neocortex that is actually detectable with a whole-head MEG system. We identified those electrically active regions to which MEG is maximally sensitive by analytically computing the probability of detecting a source within a specified confidence volume. Our findings show that source depth, and not orientation, is the main factor that compromises the sensitivity of MEG to activity in the adult human cortex. There are thin strips (∼2 mm wide) of poor resolvability at the crests of gyri; however, these strips account for only a relatively small proportion of the cortical area and are abutted by elements with nominal tangential component yet high resolvability due to their proximity to the sensor array. Finally, we varied the extent of the patches of cortical activity, showing that small patches have a small net-current moment and are therefore less visible whereas large patches have a strong net-current moment, are generally more visible to the MEG system, yet are less appropriately modelled as single dipoles.
0
Paper
Citation411
0
Save
0

Direction of information flow in large-scale resting-state networks is frequency-dependent

Arjan Hillebrand et al.Mar 21, 2016
+6
E
P
A
Significance A description of the structural and functional connections in the human brain is necessary for the understanding of both normal and abnormal brain functioning. Although it has become clear in recent years that stable patterns of functional connectivity can be observed during the resting state, to date, it remains unclear what the dominant patterns of information flow are in this functional connectome and how these relate to the integration of brain function. Our results are the first to describe the large-scale frequency-specific patterns of information flow in the human brain, showing that different subsystems form a loop through which information “reverberates” or “circulates.” These results could be extended to give insights into how such flow optimizes integrative cognitive processing.
0
Citation329
0
Save
0

The minimum spanning tree: An unbiased method for brain network analysis

Prejaas Tewarie et al.Oct 16, 2014
C
A
E
P
The brain is increasingly studied with graph theoretical approaches, which can be used to characterize network topology. However, studies on brain networks have reported contradictory findings, and do not easily converge to a clear concept of the structural and functional network organization of the brain. It has recently been suggested that the minimum spanning tree (MST) may help to increase comparability between studies. The MST is an acyclic sub-network that connects all nodes and may solve several methodological limitations of previous work, such as sensitivity to alterations in connection strength (for weighted networks) or link density (for unweighted networks), which may occur concomitantly with alterations in network topology under empirical conditions. If analysis of MSTs avoids these methodological limitations, understanding the relationship between MST characteristics and conventional network measures is crucial for interpreting MST brain network studies. Here, we firstly demonstrated that the MST is insensitive to alterations in connection strength or link density. We then explored the behavior of MST and conventional network-characteristics for simulated regular and scale-free networks that were gradually rewired to random networks. Surprisingly, although most connections are discarded during construction of the MST, MST characteristics were equally sensitive to alterations in network topology as the conventional graph theoretical measures. The MST characteristics diameter and leaf fraction were very strongly related to changes in the characteristic path length when the network changed from a regular to a random configuration. Similarly, MST degree, diameter, and leaf fraction were very strongly related to the degree of scale-free networks that were rewired to random networks. Analysis of the MST is especially suitable for the comparison of brain networks, as it avoids methodological biases. Even though the MST does not utilize all the connections in the network, it still provides a, mathematically defined and unbiased, sub-network with characteristics that can provide similar information about network topology as conventional graph measures.
0

A comparison between scalp- and source-reconstructed EEG networks

Massimo Lai et al.Mar 29, 2017
+2
M
M
M
Abstract EEG can be used to characterise functional networks using a variety of connectivity (FC) metrics. Unlike EEG source reconstruction, scalp analysis does not allow to make inferences about interacting regions, yet this latter approach has not been abandoned. Although the two approaches use different assumptions, conclusions drawn regarding the topology of the underlying networks should, ideally, not depend on the approach. The aim of the present work was to find an answer to the following questions: does scalp analysis provide a correct estimate of the network topology? how big are the distortions when using various pipelines in different experimental conditions? EEG recordings were analysed with amplitude- and phase-based metrics, founding a strong correlation for the global connectivity between scalp- and source-level. In contrast, network topology was only weakly correlated. The strongest correlations were obtained for MST leaf fraction, but only for FC metrics that limit the effects of volume conduction/signal leakage. These findings suggest that these effects alter the estimated EEG network organization, limiting the interpretation of results of scalp analysis. Finally, this study also suggests that the use of metrics that address the problem of zero lag correlations may give more reliable estimates of the underlying network topology.
10

Modeling of individual neurophysiological brain connectivity

S. Kulik et al.Mar 2, 2022
+6
E
L
S
Abstract Introduction Computational models are often used to assess how functional connectivity (FC) patterns emerge from neuronal population dynamics and anatomical connections in the brain. However, group averaged data is often used in this context and it remains unclear whether individual predictions of FC patterns using this approach can be made. Here, we assess the value of using individualized structural data for simulation of individual whole-brain FC. Methods The Jansen and Rit neural mass model was employed, where masses were coupled using individual structural connectivity (SC) obtained from diffusion weighted imaging. Simulated FC was correlated to individual magnetoencephalography-derived empirical FC. FC was estimated using both phase-based (phase lag index (PLI), phase locking value (PLV)) and amplitude-based (amplitude envelope correlation (AEC)) metrics to analyze the goodness-of-fit of different metrics for individual predictions. Prediction of individual FC was compared against the prediction of group averaged FC. We further tested whether SC of a different participant could equally well predict a participants FC pattern. Results The AEC provided a significantly better match between individually simulated and empirical FC than phase-based metrics. Simulations with individual SC provided higher correlations between simulated and empirical FC compared to using the group-averaged SC. However, using SC from other participants resulted in similar correlations between simulated and empirical FC compared to using participants own SC. Discussion This work underlines the added value of FC simulations based on individual instead of group-averaged SC, and could aid in a better understanding of mechanisms underlying individual functional network trajectories in neurological disease. Impact statement In this work, we investigated how well individual empirical functional connectivity can be simulated using the individual’s structural connectivity matrix combined with neural mass modeling. Our research highlights the potential added value of using individual simulations of functional connectivity, and could aid in a better understanding of mechanisms underlying individual functional network trajectories in neurological disease. Moreover, individualized prediction of disease trajectories could enhance patient care and may provide better treatment options.
10

Multimodal multilayer network centrality relates to executive functioning

Lucas Breedt et al.Jun 29, 2021
+13
A
F
L
Abstract Executive functioning is a higher-order cognitive process that is thought to depend on a brain network organization facilitating network integration across specialized subnetworks. The frontoparietal network (FPN), a subnetwork that has diverse connections to other brain modules, seems pivotal to this integration, and a more central role of regions in the FPN has been related to better executive functioning. Brain networks can be constructed using different modalities: diffusion MRI (dMRI) can be used to reconstruct structural networks, while resting-state fMRI (rsfMRI) and magnetoencephalography (MEG) yield functional networks. These networks are often studied in a unimodal way, which cannot capture potential complementary or synergistic modal information. The multilayer framework is a relatively new approach that allows for the integration of different modalities into one ‘network of networks’. It has already yielded promising results in the field of neuroscience, having been related to e.g. cognitive dysfunction in Alzheimer’s disease. Multilayer analyses thus have the potential to help us better understand the relation between brain network organization and executive functioning. Here, we hypothesized a positive association between centrality of the FPN and executive functioning, and we expected that multimodal multilayer centrality would supersede unilayer centrality in explaining executive functioning. We used dMRI, rsfMRI, MEG, and neuropsychological data obtained from 33 healthy adults (age range 22-70 years) to construct eight modality-specific unilayer networks (dMRI, fMRI, and six MEG frequency bands), as well as a multilayer network comprising all unilayer networks. Interlayer links in the multilayer network were present only between a node’s counterpart across layers. We then computed and averaged eigenvector centrality of the nodes within the FPN for every uni- and multilayer network and used multiple regression models to examine the relation between uni- or multilayer centrality and executive functioning. We found that higher multilayer FPN centrality, but not unilayer FPN centrality, was related to better executive functioning. To further validate multilayer FPN centrality as a relevant measure, we assessed its relation with age. Network organization has been shown to change across the life span, becoming increasingly efficient up to middle age and regressing to a more segregated topology at higher age. Indeed, the relation between age and multilayer centrality followed an inverted-U shape. These results show the importance of FPN integration for executive functioning as well as the value of a multilayer framework in network analyses of the brain. Multilayer network analysis may particularly advance our understanding of the interplay between different brain network aspects in clinical populations, where network alterations differ across modalities. Highlights: Multimodal neuroimaging and neurophysiology data were collected in healthy adults Multilayer frontoparietal centrality was positively associated with executive functioning Unilayer (unimodal) centralities were not associated with executive functioning There was an inverted-U relationship between multilayer centrality and age
1

Cellular substrates of functional network integration and memory in temporal lobe epilepsy

Linda Douw et al.Feb 1, 2021
+16
I
H
L
Abstract Temporal lobe epilepsy (TLE) patients are at risk of memory deficits, which have been linked to functional network disturbances, particularly of integration of the default mode network (DMN). However, the cellular substrates of functional network integration are unknown. We leverage a unique cross-scale dataset of therapy-resistant TLE patients, who underwent fMRI, MEG and/or neuropsychological testing before neurosurgery. fMRI and MEG underwent atlas-based connectivity analyses. Functional network centrality of the lateral middle temporal gyrus, part of the DMN, was used as a measure of local network integration. Subsequently, non-pathological cortical tissue from this region was used for single cell morphological and electrophysiological patch-clamp analysis, assessing integration in terms of total dendritic length and action potential rise speed. As could be hypothesized, greater network centrality related to better memory performance. Moreover, greater network centrality correlated with more integrative properties at the cellular level across patients. We conclude that individual differences in cognitively relevant functional network integration of a DMN region are mirrored by differences in cellular integrative properties of this region in TLE patients. These findings connect previously separate scales of investigation, increasing translational insight into focal pathology and large-scale network disturbances in TLE.
6

Disruption in structural-functional network repertoire and time-resolved subcortical-frontoparietal connectivity in disorders of consciousness

Rajanikant Panda et al.Dec 12, 2021
+8
A
A
R
Abstract Understanding recovery of consciousness and elucidating its underlying mechanism is believed to be crucial in the field of basic neuroscience and medicine. Ideas such as the global neuronal workspace and the mesocircuit theory hypothesize that failure of recovery in conscious states coincide with loss of connectivity between subcortical and frontoparietal areas, a loss of the repertoire of functional networks states and metastable brain activation. We adopted a time-resolved functional connectivity framework to explore these ideas and assessed the repertoire of functional network states as a potential marker of consciousness and its potential ability to tell apart patients in the unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS). In addition, prediction of these functional network states by underlying hidden spatial patterns in the anatomical network, i.e. so-called eigenmodes, were supplemented as potential markers. By analysing time-resolved functional connectivity from fMRI data, we demonstrated a reduction of metastability and functional network repertoire in UWS compared to MCS patients. This was expressed in terms of diminished dwell times and loss of nonstationarity in the default mode network and fronto-parietal subcortical network in UWS compared to MCS patients. We further demonstrated that these findings co-occurred with a loss of dynamic interplay between structural eigenmodes and emerging time-resolved functional connectivity in UWS. These results are, amongst others, in support of the global neuronal workspace theory and the mesocircuit hypothesis, underpinning the role of time-resolved thalamo-cortical connections and metastability in the recovery of consciousness.
6
Citation1
0
Save
Load More