CL
Chang Liu
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
44
(66% Open Access)
Cited by:
184
h-index:
166
/
i10-index:
4024
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system

Yuan Rui et al.Jul 8, 2022
Neuromorphic perception systems inspired by biology have tremendous potential in efficiently processing multi-sensory signals from the physical world, but a highly efficient hardware element capable of sensing and encoding multiple physical signals is still lacking. Here, we report a spike-based neuromorphic perception system consisting of calibratable artificial sensory neurons based on epitaxial VO2, where the high crystalline quality of VO2 leads to significantly improved cycle-to-cycle uniformity. A calibration resistor is introduced to optimize device-to-device consistency, and to adapt the VO2 neuron to different sensors with varied resistance level, a scaling resistor is further incorporated, demonstrating cross-sensory neuromorphic perception component that can encode illuminance, temperature, pressure and curvature signals into spikes. These components are utilized to monitor the curvatures of fingers, thereby achieving hand gesture classification. This study addresses the fundamental cycle-to-cycle and device-to-device variation issues of sensory neurons, therefore promoting the construction of neuromorphic perception systems for e-skin and neurorobotics.
29

Bifurcated monocyte states are predictive of mortality in severe COVID-19

Anthony Cillo et al.Feb 10, 2021
Abstract Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection presents with varied clinical manifestations 1 , ranging from mild symptoms to acute respiratory distress syndrome (ARDS) with high mortality 2,3 . Despite extensive analyses, there remains an urgent need to delineate immune cell states that contribute to mortality in severe COVID-19. We performed high-dimensional cellular and molecular profiling of blood and respiratory samples from critically ill COVID-19 patients to define immune cell genomic states that are predictive of outcome in severe COVID-19 disease. Critically ill patients admitted to the intensive care unit (ICU) manifested increased frequencies of inflammatory monocytes and plasmablasts that were also associated with ARDS not due to COVID-19. Single-cell RNAseq (scRNAseq)-based deconvolution of genomic states of peripheral immune cells revealed distinct gene modules that were associated with COVID-19 outcome. Notably, monocytes exhibited bifurcated genomic states, with expression of a cytokine gene module exemplified by CCL4 (MIP-1β) associated with survival and an interferon signaling module associated with death. These gene modules were correlated with higher levels of MIP-1β and CXCL10 levels in plasma, respectively. Monocytes expressing genes reflective of these divergent modules were also detectable in endotracheal aspirates. Machine learning algorithms identified the distinctive monocyte modules as part of a multivariate peripheral immune system state that was predictive of COVID-19 mortality. Follow-up analysis of the monocyte modules on ICU day 5 was consistent with bifurcated states that correlated with distinct inflammatory cytokines. Our data suggests a pivotal role for monocytes and their specific inflammatory genomic states in contributing to mortality in life-threatening COVID-19 disease and may facilitate discovery of new diagnostics and therapeutics.
29
Citation9
0
Save
1

A neuromechanical model for Drosophila larval crawling based on physical measurements

Xiyang Sun et al.Jul 17, 2020
Abstract Animal locomotion requires dynamic interactions between neural circuits, muscles, and surrounding environments. In contrast to intensive studies on neural circuits, the neuromechanical basis for animal behaviour remains unclear due to the lack of information on the physical properties of animals. Here, we proposed an integrated neuromechanical model based on physical measurements by taking Drosophila larvae as a model of soft- bodied animals. The biomechanical parameters of fly larvae were measured by the stress- relaxation test. By optimizing parameters in the neural circuit, our neuromechanical model succeeded in quantitatively reproducing the kinematics of larval locomotion that were obtained experimentally. This model could reproduce the observation of optogenetic studies reported previously. The model predicted that peristaltic locomotion could be exhibited in a low friction condition. Analysis of floating larvae provided results consistent with this prediction. Furthermore, the model predicted a significant contribution of intersegmental connections in the central nervous system, which contrasts with a previous study. This hypothesis allowed us to make a testable prediction for the variability in intersegmental connection in sister species of the genus Drosophila . Our model based on physical measurement provides a new foundation to study locomotion in soft-bodied animals and soft robot engineering.
1
Paper
Citation6
0
Save
5

Comparative genome analysis revealed gene inversions, boundary expansion and contraction, and gene loss in Stemona sessilifolia (Miq.) Miq. chloroplast genome

Jingting Liu et al.Feb 15, 2021
Abstract Stemona sessilifolia (Miq.) Miq., commonly known as Baibu, is one of the most popular herbal medicines in Asia. In Chinese Pharmacopoeia, Baibu has multiple authentic sources, and there are many homonym herbs sold as Baibu in the herbal medicine market. The existence of the counterfeits of Baibu brings challenges to its identification. To assist the accurate identification of Baibu, we sequenced and analyzed the complete chloroplast genome of Stemona sessilifolia using next-generation sequencing technology. The genome was 154,039 bp in length, possessing a typical quadripartite structure consisting of a pair of inverted repeats (IRs: 27,094 bp) separating by a large single copy (LSC: 81,950 bp) and a small single copy (SSC: 17,901 bp). A total of 112 unique genes were identified, including 80 protein-coding, 28 transfer RNA, and four ribosomal RNA genes. Besides, 45 tandem, 27 forward, 23 palindromic, and 72 simple sequence repeats were detected in the genome by repeat analysis. Compared with its counterfeits (Asparagus officinalis and Carludovica palmate ), we found that IR expansion and SSC contraction events of Stemona sessilifolia resulted in two copies of the rpl22 gene in the IR regions and partial duplication of the ndhF gene in the SSC region. Secondly, an approximately 3-kb-long inversion was identified in the LSC region, leading to the petA and cemA gene presented in the complementary strand of the chloroplast DNA molecule. Comparative analysis revealed some highly variable regions, including trnF-GAA_ndhJ, atpB_rbcL, rps15_ycf1, trnG-UCC_trnR-UCU, ndhF_rpl32. Finally, gene loss events were investigated in the context of phylogenetic relationships. In summary, the complete plastome of Stemona sessilifolia will provide valuable information for the molecular identification of Baibu and assist in elucidating the evolution of Stemona sessilifolia.
5
Citation3
0
Save
6

Invasive Earthworms Alter Forest Soil Microbiomes and Nitrogen Cycling

Jeonghwan Jang et al.Mar 7, 2021
Abstract Northern hardwood forests in formerly glaciated areas had been free of earthworms until exotic European earthworms were introduced by human activities. The invasion of exotic earthworms is known to dramatically alter soil physical, geochemical, and biological properties, but its impacts on soil microbiomes are still unclear. Here we show that the invasive earthworms alter soil microbiomes and ecosystem functioning, especially for nitrogen cycling. We collected soil samples at different depths from three sites across an active earthworm invasion chronosequence in a hardwood forest in Minnesota, USA. We analyzed the structures and the functional potentials of the soil microbiomes by using amplicon sequencing, high-throughput nitrogen cycle gene quantification (NiCE chip), and shotgun metagenomics. Both the levels of earthworm invasion and soil depth influenced the microbiome structures. In the most recently and minimally invaded soils, Nitrososphaera and Nitrospira as well as the genes related to nitrification were more abundant than in the heavily invaded soils. By contrast, genes related to denitrification and nitrogen fixation were more abundant in the heavily invaded than the minimally invaded soils. Our results suggest that the N cycling in forest soils is mostly nitrification driven before earthworm invasion, whereas it becomes denitrification driven after earthworm invasion.
6
Paper
Citation2
0
Save
1

Quantatitive Analysis of Conserved Sites on the SARS-CoV-2 Receptor-Binding Domain to Promote Development of Universal SARS-Like Coronavirus Vaccines

Siling Wang et al.Apr 11, 2021
Summary Although vaccines have been successfully developed and approved against SARS-CoV-2, it is still valuable to perform studies on conserved antigenic sites for preventing possible pandemic-risk of other SARS-like coronavirus in the future and prevalent SARS-CoV-2 variants. By antibodies obtained from convalescent COVID-19 individuals, receptor binding domain (RBD) were identified as immunodominant neutralizing domain that efficiently elicits neutralizing antibody response with on-going affinity mature. Moreover, we succeeded to define a quantitative antigenic map of neutralizing sites within SARS-CoV-2 RBD, and found that sites S2, S3 and S4 (new-found site) are conserved sites and determined as subimmunodominant sites, putatively due to their less accessibility than SARS-CoV-2 unique sites. P10-6G3, P07-4D10 and P05-6H7, respectively targeting S2, S3 and S4, are relatively rare antibodies that also potently neutralizes SARS-CoV, and the last mAbs performing neutralization without blocking S protein binding to receptor. Further, we have tried to design some RBDs to improve the immunogenicity of conserved sites. Our studies, focusing on conserved antigenic sites of SARS-CoV-2 and SARS-CoV, provide insights for promoting development of universal SARS-like coronavirus vaccines therefore enhancing our pandemic preparedness.
1
Citation2
0
Save
0

Biogenic crocetin-crosslinked chitosan nanoparticles with high stability and drug loading for efficient radioprotection

Chang Liu et al.Apr 1, 2024
The risk of radiation exposure increases with the development of nuclear energy and technology, and radiation protection receives more and more attention from public health and safety. However, the numerous adverse effects and low drug utilization limit the practical applications of radioprotective agents. In this study, we developed a biogenic crocetin-crosslinked chitosan nanoparticle with high stability and drug loading for efficient radioprotection. In detail, the nanoparticles were prepared using the natural antioxidant crocetin as a cross-linking reagent in amidation reactions of chitosan and mPEG-COOH. The nanoparticles exhibit a quick scavenging ability for common reactive oxygen species and reactive nitrogen in vitro. Meanwhile, cellular experiments demonstrate the good biocompatibility of the nanoparticles and the alleviation of radiation damage by scavenging reactive oxygen species, reducing apoptosis, and inhibiting DNA damage, etc. Importantly, the nanoparticles are effective in mitigating oxidative damage in major organs and maintaining peripheral blood cell content. In addition, they perform better radioprotective properties than free drug due to the significant extension of the blood half-life of crocetin in vivo from 10 min to 5 h. This work proposes a drug-crosslinking strategy for the design of a highly efficient radioprotective agent, which exhibits a promising prospect in the fields of nuclear emergency and public health.
0
Citation1
0
Save
Load More