KN
Kat North
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
460
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Survey of spiking in the mouse visual system reveals functional hierarchy

Joshua Siegle et al.Jan 20, 2021
+87
S
X
J
The anatomy of the mammalian visual system, from the retina to the neocortex, is organized hierarchically1. However, direct observation of cellular-level functional interactions across this hierarchy is lacking due to the challenge of simultaneously recording activity across numerous regions. Here we describe a large, open dataset—part of the Allen Brain Observatory2—that surveys spiking from tens of thousands of units in six cortical and two thalamic regions in the brains of mice responding to a battery of visual stimuli. Using cross-correlation analysis, we reveal that the organization of inter-area functional connectivity during visual stimulation mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas3. We find that four classical hierarchical measures—response latency, receptive-field size, phase-locking to drifting gratings and response decay timescale—are all correlated with the hierarchy. Moreover, recordings obtained during a visual task reveal that the correlation between neural activity and behavioural choice also increases along the hierarchy. Our study provides a foundation for understanding coding and signal propagation across hierarchically organized cortical and thalamic visual areas. A large, open dataset containing parallel recordings from six visual cortical and two thalamic areas of the mouse brain is presented, from which the relative timing of activity in response to visual stimuli and behaviour is used to construct a hierarchy scheme that corresponds to anatomical connectivity data.
99

Learning from unexpected events in the neocortical microcircuit

Colleen Gillon et al.Jan 16, 2021
+20
J
J
C
Abstract Scientists have long conjectured that the neocortex learns the structure of the environment in a predictive, hierarchical manner. According to this conjecture, expected, predictable features are differentiated from unexpected ones by comparing bottom-up and top-down streams of information. It is theorized that the neocortex then changes the representation of incoming stimuli, guided by differences in the responses to expected and unexpected events. In line with this conjecture, different responses to expected and unexpected sensory features have been observed in spiking and somatic calcium events. However, it remains unknown whether these unexpected event signals occur in the distal apical dendrites where many top-down signals are received, and whether these signals govern subsequent changes in the brain’s stimulus representations. Here, we show that both somata and distal apical dendrites of cortical pyramidal neurons exhibit distinct unexpected event signals that systematically change over days. These findings were obtained by tracking the responses of individual somata and dendritic branches of layer 2/3 and layer 5 pyramidal neurons over multiple days in primary visual cortex of awake, behaving mice using two-photon calcium imaging. Many neurons in both layers 2/3 and 5 showed large differences between their responses to expected and unexpected events. Interestingly, these responses evolved in opposite directions in the somata and distal apical dendrites. These differences between the somata and distal apical dendrites may be important for hierarchical computation, given that these two compartments tend to receive bottom-up and top-down information, respectively.
96

Reconciling functional differences in populations of neurons recorded with two-photon imaging and electrophysiology

Joshua Siegle et al.Aug 11, 2020
+24
X
P
J
Abstract Extracellular electrophysiology and two-photon calcium imaging are widely used methods for measuring physiological activity with single-cell resolution across large populations of neurons in the brain. While these two modalities have distinct advantages and disadvantages, neither provides complete, unbiased information about the underlying neural population. Here, we compare evoked responses in visual cortex recorded in awake mice under highly standardized conditions using either imaging or electrophysiology. Across all stimulus conditions tested, we observe a larger fraction of responsive neurons in electrophysiology and higher stimulus selectivity in calcium imaging. This work explores which data transformations are most useful for explaining these modality-specific discrepancies. We show that the higher selectivity in imaging can be partially reconciled by applying a spikes-to-calcium forward model to the electrophysiology data. However, the forward model could not reconcile differences in responsiveness without sub-selecting neurons based on event rate or level of signal contamination. This suggests that differences in responsiveness more likely reflect neuronal sampling bias or cluster-merging artifacts during spike sorting of electrophysiological recordings, rather than flaws in event detection from fluorescence time series. This work establishes the dominant impacts of the two modalities’ respective biases on a set of functional metrics that are fundamental for characterizing sensory-evoked responses.
72

Multiplane Mesoscope reveals distinct cortical interactions following expectation violations

N. Orlova et al.Oct 8, 2020
+29
D
Н
N
Cortical columns interact through dynamic routing of neuronal activity. Monitoring these interactions in animals performing a behavioral task as close as possible to real time will advance our understanding of cortical computation. We developed the Multiplane Mesoscope which combines three established concepts in microscopy: spatio-temporal multiplexing, remote focusing, and random-access mesoscopy. With the Multiplane Mesoscope, we recorded excitatory and inhibitory neuronal subpopulations simultaneously across two cortical areas and multiple cortical layers in behaving mice. In the context of a visual detection of change task, we used this novel platform to study cortical areas interactions and quantified the cell-type specific distribution of neuronal correlations across a set of visual areas and layers. We found that distinct cortical subnetworks represent expected and unexpected visual events. Our findings demonstrate that expectation violations modify signal routing across cortical columns and establish the Allen Brain Observatory Multiplane Mesoscope as a unique platform to study signal routing across connected pairs of cortical areas.
72
Citation11
0
Save
1

A whole-brain monosynaptic input connectome to neuron classes in mouse visual cortex

Shenqin Yao et al.Oct 1, 2021
+50
M
H
S
Abstract Identification of the structural connections between neurons is a prerequisite to understanding brain function. We developed a pipeline to systematically map brain-wide monosynaptic inputs to specific neuronal populations using Cre-driver mouse lines and the recombinant rabies tracing system. We first improved the rabies virus tracing strategy to accurately identify starter cells and to efficiently quantify presynaptic inputs. We then mapped brain-wide presynaptic inputs to different excitatory and inhibitory neuron subclasses in the primary visual cortex and seven higher visual areas. Our results reveal quantitative target-, layer- and cell-class-specific differences in the retrograde connectomes, despite similar global input patterns to different neuronal populations in the same anatomical area. The retrograde connectivity we define is consistent with the presence of the ventral and dorsal visual information processing streams and reveals further subnetworks within the dorsal stream. The hierarchical organization of the entire visual cortex can be derived from intracortical feedforward and feedback pathways mediated by upper- and lower-layer input neurons, respectively. This study expands our knowledge of the brain-wide inputs regulating visual areas and demonstrates that our improved rabies virus tracing strategy can be used to scale up the effort in dissecting connectivity of genetically defined cell populations in the whole mouse brain.
1
Citation5
0
Save
0

A survey of spiking activity reveals a functional hierarchy of mouse corticothalamic visual areas

Joshua Siegle et al.Oct 16, 2019
+87
Y
A
J
The mammalian visual system, from retina to neocortex, has been extensively studied at both anatomical and functional levels. Anatomy indicates the corticothalamic system is hierarchical, but characterization of cellular-level functional interactions across multiple levels of this hierarchy is lacking, partially due to the challenge of simultaneously recording activity across numerous regions. Here, we describe a large, open dataset (part of the Allen Brain Observatory ) that surveys spiking from units in six cortical and two thalamic regions responding to a battery of visual stimuli. Using spike cross-correlation analysis, we find that inter-area functional connectivity mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas . Classical functional measures of hierarchy, including visual response latency, receptive field size, phase-locking to a drifting grating stimulus, and autocorrelation timescale are all correlated with the anatomical hierarchy. Moreover, recordings during a visual task support the behavioral relevance of hierarchical processing. Overall, this dataset and the hierarchy we describe provide a foundation for understanding coding and dynamics in the mouse corticothalamic visual system.
0

VIP interneurons selectively enhance weak but behaviorally-relevant stimuli.

Daniel Millman et al.Nov 29, 2019
+13
S
G
D
Vasoactive intestinal peptide-expressing (VIP) interneurons in cortex regulate feedback inhibition of pyramidal neurons through suppression of somatostatin-expressing (SST) interneurons and, reciprocally, SST neurons inhibit VIP neurons. Here, we show that VIP neurons in mouse primary visual cortex have complementary contrast tuning to SST neurons and respond synergistically to front-to-back visual motion and locomotion. Network modeling indicates that this VIP-SST mutual antagonism regulates the gain of cortex to achieve both sensitivity to behaviorally-relevant stimuli and network stability.
24

Measuring stimulus-evoked neurophysiological differentiation in distinct populations of neurons in mouse visual cortex

William Mayner et al.Nov 27, 2020
+20
W
F
W
Abstract Despite significant progress in understanding neural coding, it remains unclear how the coordinated activity of large populations of neurons relates to what an observer actually perceives. Since neurophysiological differences must underlie differences among percepts, differentiation analysis —quantifying distinct patterns of neurophysiological activity—is an “inside out” approach that addresses this question. We used two-photon calcium imaging in mice to systematically survey stimulus-evoked neurophysiological differentiation in excitatory populations across 3 cortical layers (L2/3, L4, and L5) in each of 5 visual cortical areas (primary, lateral, anterolateral, posteromedial, and anteromedial) in response to naturalistic and phase-scrambled movie stimuli. We find that unscrambled stimuli evoke greater neurophysiological differentiation than scrambled stimuli specifically in L2/3 of the anterolateral and anteromedial areas, and that this effect is modulated by arousal state and locomotion. Contrariwise, decoding performance was far above chance and did not vary substantially across areas and layers. Differentiation also differed within the unscrambled stimulus set, suggesting that differentiation analysis may be used to probe the ethological relevance of individual stimuli.