MS
Michelle Stoecklin
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
641
h-index:
5
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Survey of spiking in the mouse visual system reveals functional hierarchy

Joshua Siegle et al.Jan 20, 2021
The anatomy of the mammalian visual system, from the retina to the neocortex, is organized hierarchically1. However, direct observation of cellular-level functional interactions across this hierarchy is lacking due to the challenge of simultaneously recording activity across numerous regions. Here we describe a large, open dataset—part of the Allen Brain Observatory2—that surveys spiking from tens of thousands of units in six cortical and two thalamic regions in the brains of mice responding to a battery of visual stimuli. Using cross-correlation analysis, we reveal that the organization of inter-area functional connectivity during visual stimulation mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas3. We find that four classical hierarchical measures—response latency, receptive-field size, phase-locking to drifting gratings and response decay timescale—are all correlated with the hierarchy. Moreover, recordings obtained during a visual task reveal that the correlation between neural activity and behavioural choice also increases along the hierarchy. Our study provides a foundation for understanding coding and signal propagation across hierarchically organized cortical and thalamic visual areas. A large, open dataset containing parallel recordings from six visual cortical and two thalamic areas of the mouse brain is presented, from which the relative timing of activity in response to visual stimuli and behaviour is used to construct a hierarchy scheme that corresponds to anatomical connectivity data.
0

Diverse Central Projection Patterns of Retinal Ganglion Cells

Emily Martersteck et al.Feb 1, 2017
Highlights•Anatomical characterization of Cre expression in the retina of 88 driver lines•Morphological and histochemical classification of Cre+ RGC types in 26 driver lines•High resolution whole brain imaging of labeled retinal axons reveals central targets•Correspondences described between Cre line and central projection patternsSummaryUnderstanding how >30 types of retinal ganglion cells (RGCs) in the mouse retina each contribute to visual processing in the brain will require more tools that label and manipulate specific RGCs. We screened and analyzed retinal expression of Cre recombinase using 88 transgenic driver lines. In many lines, Cre was expressed in multiple RGC types and retinal cell classes, but several exhibited more selective expression. We comprehensively mapped central projections from RGCs labeled in 26 Cre lines using viral tracers, high-throughput imaging, and a data processing pipeline. We identified over 50 retinorecipient regions and present a quantitative retina-to-brain connectivity map, enabling comparisons of target-specificity across lines. Projections to two major central targets were notably correlated: RGCs projecting to the outer shell or core regions of the lateral geniculate projected to superficial or deep layers within the superior colliculus, respectively. Retinal images and projection data are available online at http://connectivity.brain-map.org.Graphical abstract
0

Connecting single-cell transcriptomes to projectomes in mouse visual cortex

Staci Sorensen et al.Nov 27, 2023
The mammalian brain is composed of diverse neuron types that play different functional roles. Recent single-cell RNA sequencing approaches have led to a whole brain taxonomy of transcriptomically-defined cell types, yet cell type definitions that include multiple cellular properties can offer additional insights into a neuron's role in brain circuits. While the Patch-seq method can investigate how transcriptomic properties relate to the local morphological and electrophysiological properties of cell types, linking transcriptomic identities to long-range projections is a major unresolved challenge. To address this, we collected coordinated Patch-seq and whole brain morphology data sets of excitatory neurons in mouse visual cortex. From the Patch-seq data, we defined 16 integrated morpho-electric-transcriptomic (MET)-types; in parallel, we reconstructed the complete morphologies of 300 neurons. We unified the two data sets with a multi-step classifier, to integrate cell type assignments and interrogate cross-modality relationships. We find that transcriptomic variations within and across MET-types correspond with morphological and electrophysiological phenotypes. In addition, this variation, along with the anatomical location of the cell, can be used to predict the projection targets of individual neurons. We also shed new light on infragranular cell types and circuits, including cell-type-specific, interhemispheric projections. With this approach, we establish a comprehensive, integrated taxonomy of excitatory neuron types in mouse visual cortex and create a system for integrated, high-dimensional cell type classification that can be extended to the whole brain and potentially across species.
0
Citation2
0
Save
1

Differential encoding of temporal context and expectation under representational drift across hierarchically connected areas

David Wyrick et al.Jun 3, 2023
The classic view that neural populations in sensory cortices preferentially encode responses to incoming stimuli has been strongly challenged by recent experimental studies. Despite the fact that a large fraction of variance of visual responses in rodents can be attributed to behavioral state and movements, trial-history, and salience, the effects of contextual modulations and expectations on sensory-evoked responses in visual and association areas remain elusive. Here, we present a comprehensive experimental and theoretical study showing that hierarchically connected visual and association areas differentially encode the temporal context and expectation of naturalistic visual stimuli, consistent with the theory of hierarchical predictive coding. We measured neural responses to expected and unexpected sequences of natural scenes in the primary visual cortex (V1), the posterior medial higher order visual area (PM), and retrosplenial cortex (RSP) using 2-photon imaging in behaving mice collected through the Allen Institute Mindscope's OpenScope program. We found that information about image identity in neural population activity depended on the temporal context of transitions preceding each scene, and decreased along the hierarchy. Furthermore, our analyses revealed that the conjunctive encoding of temporal context and image identity was modulated by expectations of sequential events. In V1 and PM, we found enhanced and specific responses to unexpected oddball images, signaling stimulus-specific expectation violation. In contrast, in RSP the population response to oddball presentation recapitulated the missing expected image rather than the oddball image. These differential responses along the hierarchy are consistent with classic theories of hierarchical predictive coding whereby higher areas encode predictions and lower areas encode deviations from expectation. We further found evidence for drift in visual responses on the timescale of minutes. Although activity drift was present in all areas, population responses in V1 and PM, but not in RSP, maintained stable encoding of visual information and representational geometry. Instead we found that RSP drift was independent of stimulus information, suggesting a role in generating an internal model of the environment in the temporal domain. Overall, our results establish temporal context and expectation as substantial encoding dimensions in the visual cortex subject to fast representational drift and suggest that hierarchically connected areas instantiate a predictive coding mechanism.
0

A survey of spiking activity reveals a functional hierarchy of mouse corticothalamic visual areas

Joshua Siegle et al.Oct 16, 2019
The mammalian visual system, from retina to neocortex, has been extensively studied at both anatomical and functional levels. Anatomy indicates the corticothalamic system is hierarchical, but characterization of cellular-level functional interactions across multiple levels of this hierarchy is lacking, partially due to the challenge of simultaneously recording activity across numerous regions. Here, we describe a large, open dataset (part of the Allen Brain Observatory ) that surveys spiking from units in six cortical and two thalamic regions responding to a battery of visual stimuli. Using spike cross-correlation analysis, we find that inter-area functional connectivity mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas . Classical functional measures of hierarchy, including visual response latency, receptive field size, phase-locking to a drifting grating stimulus, and autocorrelation timescale are all correlated with the anatomical hierarchy. Moreover, recordings during a visual task support the behavioral relevance of hierarchical processing. Overall, this dataset and the hierarchy we describe provide a foundation for understanding coding and dynamics in the mouse corticothalamic visual system.