HC
Hiram Clawson
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
27
(93% Open Access)
Cited by:
20,262
h-index:
46
/
i10-index:
62
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes

Adam Siepel et al.Jul 15, 2005
We have conducted a comprehensive search for conserved elements in vertebrate genomes, using genome-wide multiple alignments of five vertebrate species (human, mouse, rat, chicken, and Fugu rubripes ). Parallel searches have been performed with multiple alignments of four insect species (three species of Drosophila and Anopheles gambiae ), two species of Caenorhabditis , and seven species of Saccharomyces . Conserved elements were identified with a computer program called phastCons, which is based on a two-state phylogenetic hidden Markov model (phylo-HMM). PhastCons works by fitting a phylo-HMM to the data by maximum likelihood, subject to constraints designed to calibrate the model across species groups, and then predicting conserved elements based on this model. The predicted elements cover roughly 3%–8% of the human genome (depending on the details of the calibration procedure) and substantially higher fractions of the more compact Drosophila melanogaster (37%–53%), Caenorhabditis elegans (18%–37%), and Saccharaomyces cerevisiae (47%–68%) genomes. From yeasts to vertebrates, in order of increasing genome size and general biological complexity, increasing fractions of conserved bases are found to lie outside of the exons of known protein-coding genes. In all groups, the most highly conserved elements (HCEs), by log-odds score, are hundreds or thousands of bases long. These elements share certain properties with ultraconserved elements, but they tend to be longer and less perfectly conserved, and they overlap genes of somewhat different functional categories. In vertebrates, HCEs are associated with the 3′ UTRs of regulatory genes, stable gene deserts, and megabase-sized regions rich in moderately conserved noncoding sequences. Noncoding HCEs also show strong statistical evidence of an enrichment for RNA secondary structure.
0
Citation3,838
0
Save
13

Towards complete and error-free genome assemblies of all vertebrate species

Arang Rhie et al.Apr 28, 2021
Abstract High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species 1–4 . To address this issue, the international Genome 10K (G10K) consortium 5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.
13
Citation1,568
0
Save
0

Aligning Multiple Genomic Sequences With the Threaded Blockset Aligner

Mathieu Blanchette et al.Apr 1, 2004
We define a "threaded blockset," which is a novel generalization of the classic notion of a multiple alignment. A new computer program called TBA (for "threaded blockset aligner") builds a threaded blockset under the assumption that all matching segments occur in the same order and orientation in the given sequences; inversions and duplications are not addressed. TBA is designed to be appropriate for aligning many, but by no means all, megabase-sized regions of multiple mammalian genomes. The output of TBA can be projected onto any genome chosen as a reference, thus guaranteeing that different projections present consistent predictions of which genomic positions are orthologous. This capability is illustrated using a new visualization tool to view TBA-generated alignments of vertebrate Hox clusters from both the mammalian and fish perspectives. Experimental evaluation of alignment quality, using a program that simulates evolutionary change in genomic sequences, indicates that TBA is more accurate than earlier programs. To perform the dynamic-programming alignment step, TBA runs a stand-alone program called MULTIZ, which can be used to align highly rearranged or incompletely sequenced genomes. We describe our use of MULTIZ to produce the whole-genome multiple alignments at the Santa Cruz Genome Browser.
0
Citation1,452
0
Save
0

The UCSC Genome Browser Database: update 2006

Angie Hinrichs et al.Dec 28, 2005
The University of California Santa Cruz Genome Browser Database (GBD) contains sequence and annotation data for the genomes of about a dozen vertebrate species and several major model organisms. Genome annotations typically include assembly data, sequence composition, genes and gene predictions, mRNA and expressed sequence tag evidence, comparative genomics, regulation, expression and variation data. The database is optimized to support fast interactive performance with web tools that provide powerful visualization and querying capabilities for mining the data. The Genome Browser displays a wide variety of annotations at all scales from single nucleotide level up to a full chromosome. The Table Browser provides direct access to the database tables and sequence data, enabling complex queries on genome-wide datasets. The Proteome Browser graphically displays protein properties. The Gene Sorter allows filtering and comparison of genes by several metrics including expression data and several gene properties. BLAT and In Silico PCR search for sequences in entire genomes in seconds. These tools are highly integrated and provide many hyperlinks to other databases and websites. The GBD, browsing tools, downloadable data files and links to documentation and other information can be found at http://genome.ucsc.edu/.
0
Citation1,327
0
Save
0

A high-resolution map of human evolutionary constraint using 29 mammals

Kerstin Lindblad‐Toh et al.Oct 1, 2011
The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ∼4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ∼60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease. This comparative genomics study, comparing the complete human genome sequence with those of 29 placental mammals, including chimpanzees, mice and dogs, identifies 4.2% of the human genome as constrained by evolutionary selection, and ascribes a potential function to about 60% of these constrained bases. A series of evolutionary signatures emerges, providing insights into coding and non-coding functional genomic elements, candidate RNA structural families and aspects of genome organization and evolution. Overlap with disease-associated variants indicates that the findings will be relevant for studies of human disease.
0
Citation1,129
0
Save
Load More