SH
Scott Hughes
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
58
h-index:
24
/
i10-index:
34
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
879

Detection and characterization of the SARS-CoV-2 lineage B.1.526 in New York

Anthony West et al.Feb 15, 2021
+17
J
J
A
Abstract Wide-scale SARS-CoV-2 genome sequencing is critical to tracking viral evolution during the ongoing pandemic. Variants first detected in the United Kingdom, South Africa, and Brazil have spread to multiple countries. We developed the software tool, Variant Database (VDB), for quickly examining the changing landscape of spike mutations. Using VDB, we detected an emerging lineage of SARS-CoV-2 in the New York region that shares mutations with previously reported variants. The most common sets of spike mutations in this lineage (now designated as B.1.526) are L5F, T95I, D253G, E484K or S477N, D614G, and A701V. This lineage was first sequenced in late November 2020 when it represented <1% of sequenced coronavirus genomes that were collected in New York City (NYC). By February 2021, genomes from this lineage accounted for ~ 32% of 3288 sequenced genomes from NYC specimens. Phylodynamic inference confirmed the rapid growth of the B.1.526 lineage in NYC, notably the sub-clade defined by the spike mutation E484K, which has outpaced the growth of other variants in NYC. Pseudovirus neutralization experiments demonstrated that B.1.526 spike mutations adversely affect the neutralization titer of convalescent and vaccinee plasma, indicating the public health importance of this lineage.
879
Citation58
0
Save
9

SARS-CoV-2 lineage assignments using phylogenetic placement/UShER are superior to pangoLEARN machine learning method

Adriano Schneider et al.May 27, 2023
+11
A
M
A
With the rapid spread and evolution of SARS-CoV-2, the ability to monitor its transmission and distinguish among viral lineages is critical for pandemic response efforts. The most commonly used software for the lineage assignment of newly isolated SARS-CoV-2 genomes is pangolin, which offers two methods of assignment, pangoLEARN and pUShER. PangoLEARN rapidly assigns lineages using a machine learning algorithm, while pUShER performs a phylogenetic placement to identify the lineage corresponding to a newly sequenced genome. In a preliminary study, we observed that pangoLEARN (decision tree model), while substantially faster than pUShER, offered less consistency across different versions of pangolin v3. Here, we expand upon this analysis to include v3 and v4 of pangolin, which moved the default algorithm for lineage assignment from pangoLEARN in v3 to pUShER in v4, and perform a thorough analysis confirming that pUShER is not only more stable across versions but also more accurate. Our findings suggest that future lineage assignment algorithms for various pathogens should consider the value of phylogenetic placement.
0

The role of socio-economic disparities in the relative success and persistence of SARS-CoV-2 variants in New York City in early 2021

Tetyana Vasylyeva et al.Jun 20, 2024
+8
J
J
T
Socio-economic disparities were associated with disproportionate viral incidence between neighborhoods of New York City (NYC) during the first wave of SARS-CoV-2. We investigated how these disparities affected the co-circulation of SARS-CoV-2 variants during the second wave in NYC. We tested for correlation between the prevalence, in late 2020/early 2021, of Alpha, Iota, Iota with E484K mutation (Iota-E484K), and B.1-like genomes and pre-existing immunity (seropositivity) in NYC neighborhoods. In the context of varying seroprevalence we described socio-economic profiles of neighborhoods and performed migration and lineage persistence analyses using a Bayesian phylogeographical framework. Seropositivity was greater in areas with high poverty and a larger proportion of Black and Hispanic or Latino residents. Seropositivity was positively correlated with the proportion of Iota-E484K and Iota genomes, and negatively correlated with the proportion of Alpha and B.1-like genomes. The proportion of persisting Alpha lineages declined over time in locations with high seroprevalence, whereas the proportion of persisting Iota-E484K lineages remained the same in high seroprevalence areas. During the second wave, the geographic variation of standing immunity, due to disproportionate disease burden during the first wave of SARS-CoV-2 in NYC, allowed for the immune evasive Iota-E484K variant, but not the more transmissible Alpha variant, to circulate in locations with high pre-existing immunity.
0

Surveillance strategies for the detection of new pathogen variants across epidemiological contexts

Kirstin Roster et al.Sep 5, 2024
+5
E
S
K
Surveillance systems that monitor pathogen genome sequences are critical for rapidly detecting the introduction and emergence of pathogen variants. To evaluate how interactions between surveillance capacity, variant properties, and the epidemiological context influence the timeliness of pathogen variant detection, we developed a geographically explicit stochastic compartmental model to simulate the transmission of a novel SARS-CoV-2 variant in New York City. We measured the impact of (1) testing and sequencing volume, (2) geographic targeting of testing, (3) the timing and location of variant emergence, and (4) the relative variant transmissibility on detection speed and on the undetected disease burden. Improvements in detection times and reduction of undetected infections were driven primarily by increases in the number of sequenced samples. The relative transmissibility of the new variant and the epidemic context of variant emergence also influenced detection times, showing that individual surveillance strategies can result in a wide range of detection outcomes, depending on the underlying dynamics of the circulating variants. These findings help contextualize the design, interpretation, and trade-offs of genomic surveillance strategies of pandemic respiratory pathogens.