A new version of ResearchHub is available.Try it now
Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
GU
G. Urban
Author with expertise in DNA Nanotechnology and Bioanalytical Applications
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
629
h-index:
47
/
i10-index:
166
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

CRISPR/Cas13a‐Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification‐Free miRNA Diagnostics

Richard Bruch et al.Oct 30, 2019
Abstract Noncoding small RNAs, such as microRNAs, are becoming the biomarkers of choice for multiple diseases in clinical diagnostics. A dysregulation of these microRNAs can be associated with many different diseases, such as cancer, dementia, and cardiovascular conditions. The key for effective treatment is an accurate initial diagnosis at an early stage, improving the patient's survival chances. In this work, the first clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a‐powered microfluidic, integrated electrochemical biosensor for the on‐site detection of microRNAs is introduced. Through this unique combination, the quantification of the potential tumor markers microRNA miR‐19b and miR‐20a is realized without any nucleic acid amplification. With a readout time of 9 min and an overall process time of less than 4 h, a limit of detection of 10 p m is achieved, using a measuring volume of less than 0.6 µL. Furthermore, the feasibility of the biosensor platform to detect miR‐19b in serum samples of children, suffering from brain cancer, is demonstrated. The validation of the obtained results with a standard quantitative real‐time polymerase chain reaction method shows the ability of the electrochemical CRISPR‐powered system to be a low‐cost, easily scalable, and target amplification‐free tool for nucleic acid based diagnostics.
0
Citation326
0
Save
0

Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem

Andreas Weltin et al.Oct 23, 2013
We present a novel, multiparametric microphysiometry system for the dynamic online monitoring of human cancer cell metabolism. The optically transparent, modular, hybrid microsystem is based on a glass chip and combines a cell cultivation chamber, microfluidics and metabolic monitoring with fully integrated chemo- and biosensors. pH and oxygen are measured in the cell culture area, and biosensors for lactate and glucose are connected downstream by microfluidics. The wafer-level fabrication features thin-film platinum and iridium oxide microelectrodes on a glass chip, microfluidics in an epoxy resist, a hybrid assembly and an on-chip reference electrode. The reliable analytical performance of the sensors in cell culture medium was demonstrated. The pH sensors exhibit a long-term stable, linear response. The oxygen sensors show a linear behaviour, which is also observed for low oxygen concentrations. Glucose and lactate measurements show a linear, long-term stable, selective and reversible behaviour in the desired range. T98G human brain cancer cells were cultivated and cell culture metabolism was measured on-chip. Stop/flow cycles were applied and extracellular acidification, respiration, glucose consumption and lactate production were quantified. Long-term metabolic rates were determined and all parameters could be measured in the outlet channel. A placement downstream of the cell cultivation area for biosensors was realised. A highly effective medium exchange and undiluted sampling from the cell culture chamber with low flow rates (2 μl min−1) and low volumes (15 μl per cycle) were achieved. The drug screening application was demonstrated by detecting alteration and recovery effects of cellular metabolism induced by the addition of substances to the medium.
0

CRISPR/Cas13a powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics

Richard Bruch et al.Aug 21, 2019
Non-coding small RNAs, such as microRNAs, are becoming the biomarkers of choice for multiple diseases in clinical diagnostics. A dysregulation of these microRNAs can be associated to many different diseases, such as cancer, dementia or cardiovascular conditions. The key for an effective treatment is an accurate initial diagnosis at an early stage, improving the patient’s survival chances. Here, we introduce a CRISPR/Cas13a powered microfluidic, integrated electrochemical biosensor for the on-site detection of microRNAs. Through this unique combination, the quantification of the potential tumor markers microRNA miR-19b and miR-20a has been realized without any nucleic acid amplification. With a readout time of 9 minutes and an overall process time of less than 4 hours, a limit of detection of 10 pM was achieved, using a measuring volume of less than 0.6 µl. Furthermore, we demonstrate the feasibility of our versatile sensor platform to detect miR-19b in serum samples of children, suffering from brain cancer. The validation of our results with a standard qRT-PCR method shows the ability of our system to be a low-cost and target amplification-free tool for nucleic acid based diagnostics.
0
Citation61
0
Save
0

Long-term in vivo Monitoring of Gliotic Sheathing of Ultrathin Entropic Coated Brain Microprobes with Fiber-based Optical Coherence Tomography

Ian Dryg et al.Feb 28, 2020
Microfabricated neuroprosthetic devices have made possible important observations on neuron activity; however, long-term high-fidelity recording performance of these devices has yet to be realized. Tissue-device interactions appear to be a primary source of lost recording performance. The current state of the art for visualizing the tissue response surrounding brain implants in animals is Immunohistochemistry + Confocal Microscopy, which is mainly performed after sacrificing the animal. Monitoring the tissue response as it develops could reveal important features of the response which may inform improvements in electrode design. Optical Coherence Tomography (OCT), an imaging technique commonly used in ophthalmology, has already been adapted for imaging of brain tissue. Here, we use OCT to achieve real-time, in vivo monitoring of the tissue response surrounding chronically implanted neural devices. The employed tissue- response-provoking implants are coated with a plasma-deposited nanofilms, which have been demonstrated as a biocompatible and anti-inflammatory interface for indwelling devices. We evaluate the method by comparing the OCT results to traditional histology qualitatively and quantitatively. The differences in OCT signal across the implantation period between the plasma group and the control reveal that the Parylene-type coating of otherwise rigid brain probes (glass and silicon) does not improve the glial encapsulation in the brain parenchyma.