MB
Mark Bathe
Author with expertise in DNA Nanotechnology and Bioanalytical Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
24
(63% Open Access)
Cited by:
2,761
h-index:
47
/
i10-index:
95
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures

Do‐Nyun Kim et al.Dec 10, 2011
DNA nanotechnology enables the programmed synthesis of intricate nanometer-scale structures for diverse applications in materials and biological science. Precise control over the 3D solution shape and mechanical flexibility of target designs is important to achieve desired functionality. Because experimental validation of designed nanostructures is time-consuming and cost-intensive, predictive physical models of nanostructure shape and flexibility have the capacity to enhance dramatically the design process. Here, we significantly extend and experimentally validate a computational modeling framework for DNA origami previously presented as CanDo [Castro,C.E., Kilchherr,F., Kim,D.-N., Shiao,E.L., Wauer,T., Wortmann,P., Bathe,M., Dietz,H. (2011) A primer to scaffolded DNA origami. Nat. Meth., 8, 221–229.]. 3D solution shape and flexibility are predicted from basepair connectivity maps now accounting for nicks in the DNA double helix, entropic elasticity of single-stranded DNA, and distant crossovers required to model wireframe structures, in addition to previous modeling (Castro,C.E., et al.) that accounted only for the canonical twist, bend and stretch stiffness of double-helical DNA domains. Systematic experimental validation of nanostructure flexibility mediated by internal crossover density probed using a 32-helix DNA bundle demonstrates for the first time that our model not only predicts the 3D solution shape of complex DNA nanostructures but also their mechanical flexibility. Thus, our model represents an important advance in the quantitative understanding of DNA-based nanostructure shape and flexibility, and we anticipate that this model will increase significantly the number and variety of synthetic nanostructures designed using nucleic acids.
0
Citation337
0
Save
0

Casting inorganic structures with DNA molds

Wei Sun et al.Oct 10, 2014
Introduction The ability to manufacture inorganic nanoparticles (NPs) with arbitrarily prescribed three-dimensional (3D) shapes and positional surface modifications is essential to enabling diverse applications (e.g., in nano-optics and biosensing). However, it is challenging to achieve 3D arbitrary user-specified shapes with sub–5-nm resolution. Top-down lithography has limited resolution, particularly for 3D shapes; capping ligands can be used to tune the energy difference of selected crystallographic facets, but typically only for highly symmetric shapes with identical surface facets. Rationale We developed a framework to program arbitrary 3D inorganic NPs using DNA, which serves both as an informational “genome” to encode the 3D shape of a NP and as a physical “fabricator” to retrieve the information and execute the instruction to manufacture the NP. Specifically, our method uses a computationally designed, mechanically stiff synthetic DNA nanostructure with a user-specified cavity as a “mold” to cast the target inorganic NP. The mold encloses a small gold (Au) “seed.” Under mild conditions, the Au seed grows into a larger metal NP that fills the entire cavity, thereby replicating its prescribed 3D shape. The remaining DNA mold additionally acts as a spatially programmable functionalization surface. Results Using this DNA nanocasting method, we constructed three distinct sub–25-nm 3D cuboid silver (Ag) NPs with three independently tunable dimensions. The shape versatility of DNA-based nanocasting was further demonstrated via the synthesis of Ag NPs with equilateral triangular, right triangular, and circular cross sections. The material versatility was demonstrated via synthesis of a Au cuboid in addition to the Ag NPs. The DNA mold served as an addressable coating for the casted NP and thus enabled the construction of higher-order composite structures, including a Y-shaped Ag NP composite and a quantum dot (QD)–Ag-QD sandwiched structure through one-step casting growth. We investigated the key design parameters for stiff DNA molds through mechanical simulations. Multilayered DNA molds provided higher mechanical stiffness for confining NP growth within the mold than single-layer DNA molds, as confirmed by experimental observation. We additionally characterized plasmonic properties of the designer equilateral Ag triangle and Ag sphere through electron energy loss spectroscopy. Tuning of particle symmetry produced a shape-specific spectrum, which is consistent with the predictions of electromagnetism-based simulations. Conclusion DNA nanocasting represents a new framework for the programmable digital fabrication of 3D inorganic nanostructures with prescribed shapes, dimensions, and surface modifications at sub– 5-nm resolution. The key design strategy is to encode linear sequences of DNA with the sophisticated user-specified 3D spatial and surface information of an inorganic NP, as well as to retrieve and execute the information to physically produce this structure via geometric confinement. Such a method may lead to computationally designed functional materials for the digital manufacture of optical nanocircuits, electronic nanocomputers, and perhaps even sophisticated inorganic nanorobots, each with their blueprints (or “genomes’’) encoded in the DNA molecules that constitute their “nanofabricators.”
0
Paper
Citation281
0
Save
1

Enhancing antibody responses by multivalent antigen display on thymus-independent DNA origami scaffolds

Eike‐Christian Wamhoff et al.Aug 17, 2022
Abstract Multivalent antigen display is a well-established principle to enhance humoral immunity. Protein-based virus-like particles (VLPs) are commonly used to spatially organize antigens. However, protein-based VLPs are limited in their ability to control valency on fixed scaffold geometries and are thymus-dependent antigens that elicit neutralizing B cell memory themselves, which can distract immune responses. Here, we investigated DNA origami as an alternative material for multivalent antigen display in vivo, applied to the receptor binding domain (RBD) of SARS-CoV-2 that is the primary antigenic target of neutralizing antibody responses. Icosahedral DNA-VLPs elicited neutralizing antibodies to SARS-CoV-2 in a valency-dependent manner following sequential immunization in mice, quantified by pseudo-and live-virus neutralization assays. Further, induction of B cell memory against the RBD required T cell help, but the immune sera did not contain boosted, class-switched antibodies against the DNA scaffold. This contrasted with protein-based VLP display of the RBD that elicited B cell memory against both the target antigen and the scaffold. Thus, DNA-based VLPs enhance target antigen immunogenicity without generating off-target, scaffold-directed immune memory, thereby offering a potentially important alternative material for particulate vaccine design.
1
Citation17
0
Save
4

Controlling wireframe DNA origami nuclease degradation with minor groove binders

Eike‐Christian Wamhoff et al.May 27, 2020
Abstract Virus-like DNA nanoparticles have emerged as promising vaccine and gene delivery platforms due to their programmable nature that offers independent control over size, shape, and functionalization. However, as biodegradable materials, their utility for specific therapeutic indications depends on their structural integrity during biodistribution to efficiently target cells, tissues, or organs. Here, we explore reversible minor groove binders to control the degradation half-lives of wireframe DNA origami. Bare, two-helix DNA nanoparticles were found to be stable under typical cell culture conditions in presence of bovine serum, yet they remain susceptible to endonucleases, specifically DNAse I. Moreover, they degrade rapidly in mouse serum, suggesting species-specific degradation. Blocking minor groove accessibility with diamidines resulted in substantial protection against endonucleases, specifically DNAse-I. This strategy was found to be compatible with both varying wireframe DNA origami architectures and functionalization with protein antigens. Our stabilization strategy offers distinct physicochemical properties compared with established cationic polymer-based methods, with synergistic therapeutic potential for minor groove binder delivery for infectious diseases and cancer.
4
Paper
Citation4
0
Save
9

Evaluation of non-modified wireframe DNA origami for acute toxicity and biodistribution in mice

Eike‐Christian Wamhoff et al.Feb 27, 2023
Abstract Wireframe DNA origami can be used to fabricate virus-like particles for a range of biomedical applications, including the delivery of nucleic acid therapeutics. However, the acute toxicity and biodistribution of these wireframe nucleic acid nanoparticles (NANPs) have not previously been characterized in animal models. In the present study, we observed no indications of toxicity in BALB/c mice following therapeutically relevant dosage of unmodified DNA-based NANPs via intravenous administration, based on liver and kidney histology, liver biochemistry, and body weight. Further, the immunotoxicity of these NANPs was minimal, as indicated by blood cell counts and type-I interferon and pro-inflammatory cytokines. In an SJL/J model of autoimmunity, we observed no indications of NANP-mediated DNA-specific antibody response or immune-mediated kidney pathology following the intraperitoneal administration of NANPs. Finally, biodistribution studies revealed that these NANPs accumulate in the liver within one hour, concomitant with substantial renal clearance. Our observations support the continued development of wireframe DNA-based NANPs as next-generation nucleic acid therapeutic delivery platforms.
9
Citation2
0
Save
Load More