YZ
Yanxiao Zhang
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
19
(68% Open Access)
Cited by:
1,484
h-index:
25
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Comprehensive analysis of single cell ATAC-seq data with SnapATAC

Rongxin Fang et al.Feb 26, 2021
Identification of the cis-regulatory elements controlling cell-type specific gene expression patterns is essential for understanding the origin of cellular diversity. Conventional assays to map regulatory elements via open chromatin analysis of primary tissues is hindered by sample heterogeneity. Single cell analysis of accessible chromatin (scATAC-seq) can overcome this limitation. However, the high-level noise of each single cell profile and the large volume of data pose unique computational challenges. Here, we introduce SnapATAC, a software package for analyzing scATAC-seq datasets. SnapATAC dissects cellular heterogeneity in an unbiased manner and map the trajectories of cellular states. Using the Nyström method, SnapATAC can process data from up to a million cells. Furthermore, SnapATAC incorporates existing tools into a comprehensive package for analyzing single cell ATAC-seq dataset. As demonstration of its utility, SnapATAC is applied to 55,592 single-nucleus ATAC-seq profiles from the mouse secondary motor cortex. The analysis reveals ~370,000 candidate regulatory elements in 31 distinct cell populations in this brain region and inferred candidate cell-type specific transcriptional regulators.
0
Citation317
0
Save
0

Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation

Sebastian Preißl et al.Feb 12, 2018
Analysis of chromatin accessibility can reveal transcriptional regulatory sequences, but heterogeneity of primary tissues poses a significant challenge in mapping the precise chromatin landscape in specific cell types. Here we report single-nucleus ATAC-seq, a combinatorial barcoding-assisted single-cell assay for transposase-accessible chromatin that is optimized for use on flash-frozen primary tissue samples. We apply this technique to the mouse forebrain through eight developmental stages. Through analysis of more than 15,000 nuclei, we identify 20 distinct cell populations corresponding to major neuronal and non-neuronal cell types. We further define cell-type-specific transcriptional regulatory sequences, infer potential master transcriptional regulators and delineate developmental changes in forebrain cellular composition. Our results provide insight into the molecular and cellular dynamics that underlie forebrain development in the mouse and establish technical and analytical frameworks that are broadly applicable to other heterogeneous tissues. This study describes single-nucleus ATAC-seq, a method to profile open chromatin in individual nuclei from frozen tissues. It is used to examine gene regulation in 15,000 nuclei comprising 20 distinct cell types in the developing mouse forebrain.
0
Citation314
0
Save
0

An atlas of dynamic chromatin landscapes in mouse fetal development

David Gorkin et al.Jul 29, 2020
The Encyclopedia of DNA Elements (ENCODE) project has established a genomic resource for mammalian development, profiling a diverse panel of mouse tissues at 8 developmental stages from 10.5 days after conception until birth, including transcriptomes, methylomes and chromatin states. Here we systematically examined the state and accessibility of chromatin in the developing mouse fetus. In total we performed 1,128 chromatin immunoprecipitation with sequencing (ChIP-seq) assays for histone modifications and 132 assay for transposase-accessible chromatin using sequencing (ATAC-seq) assays for chromatin accessibility across 72 distinct tissue-stages. We used integrative analysis to develop a unified set of chromatin state annotations, infer the identities of dynamic enhancers and key transcriptional regulators, and characterize the relationship between chromatin state and accessibility during developmental gene regulation. We also leveraged these data to link enhancers to putative target genes and demonstrate tissue-specific enrichments of sequence variants associated with disease in humans. The mouse ENCODE data sets provide a compendium of resources for biomedical researchers and achieve, to our knowledge, the most comprehensive view of chromatin dynamics during mammalian fetal development to date.
0
Citation307
0
Save
32

CTCF Mediates Dosage and Sequence-context-dependent Transcriptional Insulation through Formation of Local Chromatin Domains

Hui Huang et al.Jul 8, 2020
Abstract Insulators play a critical role in spatiotemporal gene expression in metazoans by separating active and repressive chromatin domains and preventing inappropriate enhancer-promoter contacts. The evolutionarily conserved CCCTC-binding factor (CTCF) is required for insulator function in mammals, but not all of its binding sites act as insulators. Here, we explore the sequence requirements of CTCF-mediated transcriptional insulation with the use of a sensitive insulator reporter assay in mouse embryonic stem cells. We find that insulation potency depends on the number of CTCF binding sites in tandem. Furthermore, CTCF-mediated insulation is dependent on DNA sequences flanking its core binding motifs, and CTCF binding sites at topologically associating domain(TAD) boundaries are more likely to function as insulators than those outside TAD boundaries, independent of binding strength. Using chromosomal conformation capture assays and high-resolution chromatin imaging techniques, we demonstrate that insulators form local chromatin domain boundaries and reduce enhancer-promoter contacts. Taken together, our results provide strong genetic, molecular, and structural evidence connecting chromatin topology to the action of insulators in the mammalian genome.
32
Citation13
0
Save
2

Topologically Associating Domain Boundaries are Commonly Required for Normal Genome Function

Sudha Rajderkar et al.May 7, 2021
Summary Topologically associating domain (TAD) boundaries are thought to partition the genome into distinct regulatory territories. Anecdotal evidence suggests that their disruption may interfere with normal gene expression and cause disease phenotype 1–3 , but the overall extent to which this occurs remains unknown. Here we show that TAD boundary deletions commonly disrupt normal genome function in vivo . We used CRISPR genome editing in mice to individually delete eight TAD boundaries (11-80kb in size) from the genome in mice. All deletions examined resulted in at least one detectable molecular or organismal phenotype, which included altered chromatin interactions or gene expression, reduced viability, and anatomical phenotypes. For 5 of 8 (62%) loci examined, boundary deletions were associated with increased embryonic lethality or other developmental phenotypes. For example, a TAD boundary deletion near Smad3/Smad6 caused complete embryonic lethality, while a deletion near Tbx5/Lhx5 resulted in a severe lung malformation. Our findings demonstrate the importance of TAD boundary sequences for in vivo genome function and suggest that noncoding deletions affecting TAD boundaries should be carefully considered for potential pathogenicity in clinical genetics screening.
2
Citation9
0
Save
0

3D Chromatin Architecture Remodeling during Human Cardiomyocyte Differentiation Reveals A Role Of HERV-H In Demarcating Chromatin Domains

Yanxiao Zhang et al.Dec 4, 2018
Abstract Dynamic restructuring of chromatin architecture has been implicated in cell-type specific gene regulatory programs; yet, how chromatin remodels during lineage specification remains to be elucidated. Through interrogating chromatin reorganization during human cardiomyocyte differentiation, we uncover dynamic chromatin interactions between genes and distal regulatory elements harboring noncoding variants associated with adult and congenital heart diseases. Unexpectedly, we also discover a new class of human pluripotent stem cell (PSC)-specific topologically associating domains (TAD) that are created by the actively transcribed endogenous retrotransposon HERV-H. Deletion or silencing of specific HERV-H elements eliminates corresponding TAD boundaries, while de novo insertion of HERV-H can introduce new chromatin domain boundaries in human PSCs. Furthermore, comparative analysis of chromatin architecture in other species that lack HERV-H sequences supports a role for actively transcribed HERV-H in demarcating human PSC-specific TADs. The biological role of HERV-H is further underscored by the observation that deletion of a specific HERV-H reduces transcription of genes upstream and facilitates cell differentiation. Overall, our results highlight a previously unrecognized role for retrotransposons in restructuring genome architecture in the human genome and delineate dynamic gene regulatory networks during cardiomyocyte development that inform how non-coding genetic variants contribute to human heart diseases.
0
Citation9
0
Save
46

Cardiac Cell Type-Specific Gene Regulatory Programs and Disease Risk Association

James Hocker et al.Sep 12, 2020
ABSTRACT Background Cis -regulatory elements such as enhancers and promoters are crucial for directing gene expression in the human heart. Dysregulation of these elements can result in many cardiovascular diseases that are major leading causes of morbidity and mortality worldwide. In addition, genetic variants associated with cardiovascular disease risk are enriched within cis -regulatory elements. However, the location and activity of these cis -regulatory elements in individual cardiac cell types remains to be fully defined. Methods We performed single nucleus ATAC-seq and single nucleus RNA-seq to define a comprehensive catalogue of candidate cis -regulatory elements (cCREs) and gene expression patterns for the distinct cell types comprising each chamber of four non-failing human hearts. We used this catalogue to computationally deconvolute dynamic enhancers in failing hearts and to assign cardiovascular disease risk variants to cCREs in individual cardiac cell types. Finally, we applied reporter assays, genome editing and electrophysiogical measurements in in vitro differentiated human cardiomyocytes to validate the molecular mechanisms of cardiovascular disease risk variants. Results We defined >287,000 candidate cis -regulatory elements (cCREs) in human hearts at single-cell resolution, which notably revealed gene regulatory programs controlling specific cell types in a cardiac region/structure-dependent manner and during heart failure. We further report enrichment of cardiovascular disease risk variants in cCREs of distinct cardiac cell types, including a strong enrichment of atrial fibrillation variants in cardiomyocyte cCREs, and reveal 38 candidate causal atrial fibrillation variants localized to cardiomyocyte cCREs. Two such risk variants residing within a cardiomyocyte-specific cCRE at the KCNH2/HERG locus resulted in reduced enhancer activity compared to the non-risk allele. Finally, we found that deletion of the cCRE containing these variants decreased KCNH2 expression and prolonged action potential repolarization in an enhancer dosage-dependent manner. Conclusions This comprehensive atlas of human cardiac cCREs provides the foundation for not only illuminating cell type-specific gene regulatory programs controlling human hearts during health and disease, but also interpreting genetic risk loci for a wide spectrum of cardiovascular diseases.
46
Citation2
0
Save
Load More