MB
M. Behrens
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Salk Institute for Biological Studies, University of California, San Diego, California Institute of Technology
+ 16 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(53% Open Access)
Cited by:
368
h-index:
42
/
i10-index:
66
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

DNA Methylation Atlas of the Mouse Brain at Single-Cell Resolution

Hanqing Liu et al.Oct 24, 2023
+25
W
J
H
Summary Mammalian brain cells are remarkably diverse in gene expression, anatomy, and function, yet the regulatory DNA landscape underlying this extensive heterogeneity is poorly understood. We carried out a comprehensive assessment of the epigenomes of mouse brain cell types by applying single nucleus DNA methylation sequencing to profile 110,294 nuclei from 45 regions of the mouse cortex, hippocampus, striatum, pallidum, and olfactory areas. We identified 161 cell clusters with distinct spatial locations and projection targets. We constructed taxonomies of these epigenetic types, annotated with signature genes, regulatory elements, and transcription factors. These features indicate the potential regulatory landscape supporting the assignment of putative cell types, and reveal repetitive usage of regulators in excitatory and inhibitory cells for determining subtypes. The DNA methylation landscape of excitatory neurons in the cortex and hippocampus varied continuously along spatial gradients. Using this deep dataset, an artificial neural network model was constructed that precisely predicts single neuron cell-type identity and brain area spatial location. Integration of high-resolution DNA methylomes with single-nucleus chromatin accessibility data allowed prediction of high-confidence enhancer-gene interactions for all identified cell types, which were subsequently validated by cell-type-specific chromatin conformation capture experiments. By combining multi-omic datasets (DNA methylation, chromatin contacts, and open chromatin) from single nuclei and annotating the regulatory genome of hundreds of cell types in the mouse brain, our DNA methylation atlas establishes the epigenetic basis for neuronal diversity and spatial organization throughout the mouse brain.
1
Citation10
0
Save
44

Epigenomic complexity of the human brain revealed by single-cell DNA methylomes and 3D genome structures

Wei Tian et al.Oct 24, 2023
+35
A
J
W
Delineating the gene regulatory programs underlying complex cell types is fundamental for understanding brain functions in health and disease. Here, we comprehensively examine human brain cell epigenomes by probing DNA methylation and chromatin conformation at single-cell resolution in over 500,000 cells from 46 brain regions. We identified 188 cell types and characterized their molecular signatures. Integrative analyses revealed concordant changes in DNA methylation, chromatin accessibility, chromatin organization, and gene expression across cell types, cortical areas, and basal ganglia structures. With these resources, we developed scMCodes that reliably predict brain cell types using their methylation status at select genomic sites. This multimodal epigenomic brain cell atlas provides new insights into the complexity of cell type-specific gene regulation in the adult human brain.
44
Citation6
0
Save
0

Cell-type-specific effects of age and sex on human cortical neurons

Jo-fan Chien et al.Sep 6, 2024
+17
B
H
J
Altered transcriptional and epigenetic regulation of brain cell types may contribute to cognitive changes with advanced age. Using single-nucleus multi-omic DNA methylation and transcriptome sequencing (snmCT-seq) in frontal cortex from young adult and aged donors, we found widespread age- and sex-related variation in specific neuron types. The proportion of inhibitory SST- and VIP-expressing neurons was reduced in aged donors. Excitatory neurons had more profound age-related changes in their gene expression and DNA methylation than inhibitory cells. Hundreds of genes involved in synaptic activity, including EGR1, were less expressed in aged adults. Genes located in subtelomeric regions increased their expression with age and correlated with reduced telomere length. We further mapped cell-type-specific sex differences in gene expression and X-inactivation escape genes. Multi-omic single-nucleus epigenomes and transcriptomes provide new insight into the effects of age and sex on human neurons.
0
Citation3
0
Save
0

Iterative Refinement of Cellular Identity from Single-Cell Data Using Online Learning

Chao Gao et al.May 7, 2020
+8
C
S
C
Recent experimental advances have enabled high-throughput single-cell measurement of gene expression, chromatin accessibility and DNA methylation. We previously used integrative non-negative matrix factorization (iNMF) to jointly learn interpretable low-dimensional representations from multiple single-cell datasets using dataset-specific and shared metagene factors. These factors provide a principled, quantitative definition of cellular identity and how it varies across biological contexts. However, datasets exceeding 1 million cells are now widely available, creating computational barriers to scientific discovery. For instance, it is no longer feasible to analyze large datasets using standard pipelines on a personal computer with limited memory capacity. Moreover, there is a need for an algorithm capable of iteratively refining the definition of cellular identity as efforts to create a comprehensive human cell atlas continually sequence new cells.To address these challenges, we developed an online learning algorithm for integrating large and continually arriving single-cell datasets. We extended previous online learning approaches for NMF to minimize the expected cost of a surrogate function for the iNMF objective. We also derived a novel hierarchical alternating least squares algorithm for iNMF and incorporated it into an efficient online algorithm. Our online approach accesses the training data as mini-batches, decoupling memory usage from dataset size and allowing on-the-fly incorporation of new datasets as they are generated. The online implementation of iNMF converges much more quickly using a fraction of the memory required for the batch implementation, without sacrificing solution quality. Our new approach processes 1.3 million single cells from the entire mouse embryo on a laptop in 25 minutes using less than 500 MB of RAM. We also analyze large datasets without downloading them to disk by streaming them over the internet on demand. Furthermore, we construct a single-cell multi-omic cell atlas of the mouse motor cortex by iteratively incorporating eight single-cell RNA-seq, single-nucleus RNA-seq, single-nucleus ATAC-seq, and single-nucleus DNA methylation datasets generated by the BRAIN Initiative Cell Census Network.Our approach obviates the need to recompute results each time additional cells are sequenced, dramatically increases convergence speed, and allows processing of datasets too large to fit in memory or on disk. Most importantly, it facilitates continual refinement of cell identity as new single-cell datasets from different biological contexts and data modalities are generated.
0

Fast and Accurate Clustering of Single Cell Epigenomes Reveals Cis-Regulatory Elements in Rare Cell Types

Rongxin Fang et al.May 6, 2020
+13
Y
S
R
Mammalian tissues are composed of highly specialized cell types defined by distinct gene expression patterns. Identification of cis -regulatory elements responsible for cell-type specific gene expression is essential for understanding the origin of the cellular diversity. Conventional assays to map cis -elements via open chromatin analysis of primary tissues fail to resolve their cell type specificity and lack the sensitivity to identify cis -elements in rare cell types. Single nucleus analysis of transposase-accessible chromatin (ATAC-seq) can overcome this limitation, but current analysis methods begin with pre-defined genomic regions of accessibility and are therefore biased toward the dominant population of a tissue. Here we report a method, Single Nucleus Analysis Pipeline for ATAC-seq (SnapATAC), that can efficiently dissect cellular heterogeneity in an unbiased manner using single nucleus ATAC-seq datasets and identify candidate regulatory sequences in constituent cell types. We demonstrate that SnapATAC outperforms existing methods in both accuracy and scalability. We further analyze 64,795 single cell chromatin profiles from the secondary motor cortex of mouse brain, creating a chromatin landscape atlas with unprecedent resolution, including over 300,000 candidate cis -regulatory elements in nearly 50 distinct cell populations. These results demonstrate a systematic approach for comprehensive analysis of cis -regulatory sequences in the mammalian genomes.
1

Brain-wide Correspondence Between Neuronal Epigenomics and Long-Distance Projections

Jingtian Zhou et al.Oct 24, 2023
+45
M
Z
J
Abstract Single-cell genetic and epigenetic analyses parse the brain’s billions of neurons into thousands of “cell-type” clusters, each residing in different brain structures. Many of these cell types mediate their unique functions by virtue of targeted long-distance axonal projections to allow interactions between specific cell types. Here we have used Epi-Retro-Seq to link single cell epigenomes and associated cell types to their long-distance projections for 33,034 neurons dissected from 32 different source regions projecting to 24 different targets (225 source →target combinations) across the whole mouse brain. We highlight uses of this large data set for interrogating both overarching principles relating projection cell types to their transcriptomic and epigenomic properties and for addressing and developing specific hypotheses about cell types and connections as they relate to genetics. We provide an overall synthesis of the data set with 926 statistical comparisons of the discriminability of neurons projecting to each target for every dissected source region. We integrate this dataset into the larger, annotated BICCN cell type atlas composed of millions of neurons to link projection cell types to consensus clusters. Integration with spatial transcriptomic data further assigns projection-enriched clusters to much smaller source regions than afforded by the original dissections. We exemplify these capabilities by presenting in-depth analyses of neurons with identified projections from the hypothalamus, thalamus, hindbrain, amygdala, and midbrain to provide new insights into the properties of those cell types, including differentially expressed genes, their associated cis-regulatory elements and transcription factor binding motifs, and neurotransmitter usage.
0

Cell type-specific enrichment of somatic aneuploidy in the mammalian brain

Eran Mukamel et al.Dec 19, 2023
J
M
H
E
ABSTRACT Somatic mutations alter the genomes of a subset of an individual’s brain cells 1–3 , impacting gene regulation and contributing to disease processes 4,5 . Mosaic single nucleotide variants have been characterized with single-cell resolution in the brain 2,3 , but we have limited information about large-scale structural variation, including whole-chromosome duplication or loss 1,6,7 . We used a dataset of over 415,000 single-cell DNA methylation and chromatin conformation profiles across the adult mouse brain to identify aneuploid cells comprehensively. Whole-chromosome loss or duplication occurred in <1% of cells, with rates up to 1.8% in non-neuronal cell types, including oligodendrocyte precursors and pericytes. Among all aneuploidies, we observed a strong enrichment of trisomy on chromosome 16, which is syntenic with human chromosome 21 and constitutively trisomic in Down syndrome. Chromosome 16 trisomy occurred in multiple cell types and across brain regions, suggesting that nondisjunction is a recurrent feature of somatic variation in the brain.
0

Polycomb-mediated repression compensates for loss of postnatal DNA methylation in excitatory neurons

Junhao Li et al.May 7, 2020
+14
M
A
J
Epigenetic modifications of DNA regulate gene expression throughout the lifespan in neurons. Two major epigenetic pathways of repression, DNA methylation and Polycomb repressive complex 2 (PRC2) mediated gene silencing, regulate neuronal physiology and function, but their relative contributions are unknown. We found that conditional loss of the de novo DNA methyltransferase Dnmt3a in mouse excitatory neurons altered expression of synapse-related genes, impaired the maturation of postsynaptic dendritic spines and dampened neuronal excitability. These phenotypes were accompanied by working memory and social interest deficits. To elucidate the epigenetic mechanisms, we performed deep sequencing of DNA methylation, transcription, and chromatin modifications in cortical excitatory neurons. Loss of Dnmt3a abolished postnatal accumulation of CG and non-CG DNA methylation, leaving neurons with an unmethylated, fetal-like epigenomic pattern at ~140,000 genomic regions. The PRC2 associated histone modification H3K27me3 increased at many of these sites, partially compensating for the loss of DNA methylation. Our results suggest a complex interaction between two key modes of epigenetic repression of gene expression during brain development that supports cognitive function in adulthood.
0

Robust single-cell DNA methylome profiling with snmC-seq2

Chongyuan Luo et al.May 6, 2020
+15
J
A
C
Single-cell DNA methylome profiling has enabled the study of epigenomic heterogeneity in complex tissues and during cellular reprogramming. However, broader applications of the method have been impeded by the modest quality of sequencing libraries. Here we report snmC-seq2, which provides improved read mapping, reduced artifactual reads, enhanced throughput, as well as increased library complexity and coverage uniformity compared to snmC-seq. snmC-seq2 is an efficient strategy suited for large scale single-cell epigenomic studies.
0

Loss of Dnmt3a dependent methylation in inhibitory neurons impairs neural function through a mechanism that impacts Rett syndrome

Laura Lavery et al.May 7, 2020
+13
Y
K
L
Methylated cytosine is an effector of epigenetic gene regulation. In the mammalian brain, the DNA methyltransferase, Dnmt3a, is the sole "writer" of atypical non-CpG methylation (mCH), and methyl CpG binding protein 2 (MeCP2) is the only known "reader" for mCH. We set out to determine if MeCP2 is the sole reader for Dnmt3a dependent methylation by comparing mice lacking either Dnmt3a or MeCP2 in GABAergic inhibitory neurons. Loss of either the writer or the reader causes overlapping and distinct features from the behavioral to the molecular level. Loss of Dnmt3a results in global loss of mCH and a small subset of mCG sites resulting in more widespread transcriptional alterations and severe neurological dysfunction than seen upon MeCP2 loss. These data indicate that MeCP2 is responsible for reading part of the Dnmt3a dependent methylation in the brain. Importantly, the impact of MeCP2 on genes differentially expressed in both cKO models shows a strong dependence on mCH, but not Dnmt3a dependent mCG, consistent with mCH playing a central role in the pathogenesis of Rett Syndrome.
Load More