TH
Takatsugu Hirokawa
Author with expertise in Molecular Mechanisms of Inflammasome Activation and Regulation
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(33% Open Access)
Cited by:
1,283
h-index:
35
/
i10-index:
93
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Prediction of the binding mechanism of a selective DNA methyltransferase 3A inhibitor by molecular simulation

Genki Kudo et al.Jun 12, 2024
Abstract DNA methylation is an epigenetic mechanism that introduces a methyl group at the C5 position of cytosine. This reaction is catalyzed by DNA methyltransferases (DNMTs) and is essential for the regulation of gene transcription. The DNMT1 and DNMT3A or -3B family proteins are known targets for the inhibition of DNA hypermethylation in cancer cells. A selective non-nucleoside DNMT3A inhibitor was developed that mimics S-adenosyl-l-methionine and deoxycytidine; however, the mechanism of selectivity is unclear because the inhibitor–protein complex structure determination is absent. Therefore, we performed docking and molecular dynamics simulations to predict the structure of the complex formed by the association between DNMT3A and the selective inhibitor. Our simulations, binding free energy decomposition analysis, structural isoform comparison, and residue scanning showed that Arg688 of DNMT3A is involved in the interaction with this inhibitor, as evidenced by its significant contribution to the binding free energy. The presence of Asn1192 at the corresponding residues in DNMT1 results in a loss of affinity for the inhibitor, suggesting that the interactions mediated by Arg688 in DNMT3A are essential for selectivity. Our findings can be applied in the design of DNMT-selective inhibitors and methylation-specific drug optimization procedures.
0
Citation1
0
Save
1

Pseudoirreversible inhibition elicits persistent efficacy of a sphigosine-1-phosphate receptor-1 antagonist

Yuya Maruyama et al.May 9, 2023
Abstract Sphingosine 1-phosphate receptor 1 (S1PR1), a G protein-coupled receptor, is required for lymphocyte trafficking, and is a promising therapeutic target in inflammatory diseases. To find potent S1PR1 antagonists, identification of the structural basis for drug efficacy is important. Here, we synthesized a novel antagonist, KSI-6666, that persistently inhibits S1PR1 activity and effectively suppresses pathogenic inflammation. Metadynamics simulation suggested that the interaction of a benzene ring moiety in KSI-6666 with a methionine residue in the ligand-binding pocket of S1PR1 inhibits the dissociation of KSI-6666 from S1PR1, generating a metastable binding state. Consistently, in vitro functional and mutational analyses revealed that KSI-6666 causes pseudoirreversible inhibition of S1PR1, dependent on the methionine residue of the protein and substituents on the distal benzene ring of KSI-6666. Moreover, in vivo study suggested that this pseudoirreversible inhibition is responsible for the persistent activity of KSI-6666. These findings will contribute to the rational design of potent S1PR1 antagonists for the treatment of inflammatory disorders.
0

Hexestrol, an estrogen receptor agonist, inhibits Lassa virus entry

Zihan Zhang et al.May 29, 2024
ABSTRACT Lassa virus (LASV) is the causative agent of human Lassa fever which in severe cases manifests as hemorrhagic fever leading to thousands of deaths annually. However, no approved vaccines or antiviral drugs are currently available. Recently, we screened approximately 2,500 compounds using a recombinant vesicular stomatitis virus (VSV) expressing LASV glycoprotein GP (VSV-LASVGP) and identified a P-glycoprotein inhibitor as a potential LASV entry inhibitor. Here, we show that another identified candidate, hexestrol (HES), an estrogen receptor agonist, is also a LASV entry inhibitor. HES inhibited VSV-LASVGP replication with a 50% inhibitory concentration (IC 50 ) of 0.63 µM. Importantly, HES also inhibited authentic LASV replication with IC 50 values of 0.31 µM–0.61 µM. Time-of-addition and cell-based membrane fusion assays suggested that HES inhibits the membrane fusion step during virus entry. Alternative estrogen receptor agonists did not inhibit VSV-LASVGP replication, suggesting that the estrogen receptor itself is unlikely to be involved in the antiviral activity of HES. Generation of a HES-resistant mutant revealed that the phenylalanine at amino acid position 446 (F446) of LASVGP, which is located in the transmembrane region, conferred resistance to HES. Although mutation of F446 enhanced the membrane fusion activity of LASVGP, it exhibited reduced VSV-LASVGP replication, most likely due to the instability of the pre-fusion state of LASVGP. Collectively, our results demonstrated that HES is a promising anti-LASV drug that acts by inhibiting the membrane fusion step of LASV entry. This study also highlights the importance of the LASVGP transmembrane region as a target for anti-LASV drugs. IMPORTANCE Lassa virus (LASV), the causative agent of Lassa fever, is the most devastating mammarenavirus with respect to its impact on public health in West Africa. However, no approved antiviral drugs or vaccines are currently available. Here, we identified hexestrol (HES), an estrogen receptor agonist, as the potential antiviral candidate drug. We showed that the estrogen receptor itself is not involved in the antiviral activity. HES directly bound to LASVGP and blocked membrane fusion, thereby inhibiting LASV infection. Through the generation of a HES-resistant virus, we found that phenylalanine at position 446 (F446) within the LASVGP transmembrane region plays a crucial role in the antiviral activity of HES. The mutation at F446 caused reduced virus replication, likely due to the instability of the pre-fusion state of LASVGP. These findings highlight the potential of HES as a promising candidate for the development of antiviral compounds targeting LASV.
0

Multidrug treatment with nelfinavir and cepharanthine against COVID-19

Hirofumi Ohashi et al.Apr 15, 2020
Antiviral treatments targeting the emerging coronavirus disease 2019 (COVID-19) are urgently required. We screened a panel of already-approved drugs in a cell culture model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and identified two new antiviral agents: the HIV protease inhibitor Nelfinavir and the anti-inflammatory drug Cepharanthine. In silico modeling shows Nelfinavir binds the SARS-CoV-2 main protease consistent with its inhibition of viral replication, whilst Cepharanthine inhibits viral attachment and entry into cells. Consistent with their different modes of action, in vitro assays highlight a synergistic effect of this combined treatment to limit SARS-CoV-2 proliferation. Mathematical modeling in vitro antiviral activity coupled with the known pharmacokinetics for these drugs predicts that Nelfinavir will facilitate viral clearance. Combining Nelfinavir/Cepharanthine enhanced their predicted efficacy to control viral proliferation, to ameliorate both the progression of disease and risk of transmission. In summary, this study identifies a new multidrug combination treatment for COVID-19.### Competing Interest StatementThe authors have declared no competing interest.
0

CaMKII-dependent non-canonical RIG-I pathway promotes influenza virus propagation in the acute-phase of infection

Shinichiro Hama et al.Nov 27, 2024
ABSTRACT Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) is one of hundreds of host-cell factors involved in the propagation of type A influenza virus (IAV), although its mechanism of action is unknown. Here, we identified CaMKII inhibitory peptide M3 by targeting its kinase domain using affinity-based screening of a tailored random peptide library. M3 inhibited IAV cytopathicity and propagation in cells by specifically inhibiting the acute-phase activation of retinoic acid-inducible gene I (RIG-I), which is uniquely regulated by CaMKII. Downstream of the RIG-I pathway activated TBK1 and then IRF3, which induced small but sufficient amounts of transcripts of the genes for IFN α/β to provide the capped 5’-ends that were used preferentially as primers to synthesize viral mRNAs by the cap-snatching mechanism. Importantly, knockout of RIG-I in cells almost completely inhibited the expression of IFN mRNAs and subsequent viral NP mRNA early in infection (up to 6 h after infection), which then protected cells from cytopathicity 24 h after infection. Thus, CaMKII-dependent acute-phase activation of RIG-I promoted IAV propagation, whereas the canonical RIG-I pathway stimulated antiviral activity by inducing large amounts of mRNA for IFNs and then for antiviral proteins later in infection. Co-administration of M3 with IAV infection rescued mice from the lethality and greatly reduced proinflammatory cytokine mRNA expression in the lung, indicating that M3 is highly effective against IAV in vivo . Thus, regulation of the CaMKII-dependent non-canonical RIG-I pathway may provide a novel host-factor-directed antiviral therapy. IMPORTANCE The recent emergence of IAV strains resistant to commonly used therapeutic agents that target viral proteins has exacerbated the need for innovative strategies. Here, we originally identified CaMKII-inhibitory peptide M3, which efficiently inhibits IAV-lethality in vitro and in vivo . M3 specifically inhibited the acute-phase activation of RIG-I, which is a novel pathway to promote IAV propagation. Thus, this pathway acts in an opposite manner compared with the canonical RIG-I pathway, which plays essential roles in antiviral innate immune response later in infection. The CaMKII-dependent non-canonical RIG-I pathway can be a promising and novel drug target for the treatment of infections.
Load More