IW
Ian Wilson
Author with expertise in Coronavirus Disease 2019 Research
Scripps Research Institute, International AIDS Vaccine Initiative, ImaginAb (United States)
+ 8 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
77
(75% Open Access)
Cited by:
257
h-index:
171
/
i10-index:
781
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
39

Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants

Meng Yuan et al.Oct 11, 2023
+14
C
D
M
The protective efficacy of neutralizing antibodies (nAbs) elicited during natural infection with SARS-CoV-2 and by vaccination based on its spike protein has been compromised with emergence of the recent SARS-CoV-2 variants. Residues E484 and K417 in the receptor-binding site (RBS) are both mutated in lineages first described in South Africa (B.1.351) and Brazil (B.1.1.28.1). The nAbs isolated from SARS-CoV-2 patients are preferentially encoded by certain heavy-chain germline genes and the two most frequently elicited antibody families (IGHV3-53/3-66 and IGHV1-2) can each bind the RBS in two different binding modes. However, their binding and neutralization are abrogated by either the E484K or K417N mutation, whereas nAbs to the cross-reactive CR3022 and S309 sites are largely unaffected. This structural and functional analysis illustrates why mutations at E484 and K417 adversely affect major classes of nAbs to SARS-CoV-2 with consequences for next-generation COVID-19 vaccines.
39
Citation49
0
Save
50

Structure-based design of a highly stable, covalently-linked SARS-CoV-2 spike trimer with improved structural properties and immunogenicity

Eduardo Olmedillas et al.Oct 23, 2023
+16
W
C
E
SUMMARY The continued threat of SARS-CoV-2 to global health necessitates development of improved research tools and vaccines. We present an improved SARS-CoV-2 spike ectodomain, “VFLIP”, bearing five proline substitutions, a flexible cleavage site linker, and an inter-protomer disulfide bond. VFLIP displays significantly improved stability, high-yield production and retains its trimeric state without exogenous trimerization motifs. High-resolution cryo-EM and glycan profiling reveal that the VFLIP quaternary structure and glycosylation mimic the native spike on the viral surface. Further, VFLIP has enhanced affinity and binding kinetics relative to other stabilized spike proteins for antibodies in the Coronavirus Immunotherapeutic Consortium (CoVIC), and mice immunized with VFLIP exhibit potent neutralizing antibody responses against wild-type and B.1.351 live SARS-CoV-2. Taken together, VFLIP represents an improved tool for diagnostics, structural biology, antibody discovery, and vaccine design.
1

Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause severe disease

Pan-Pan Zhou et al.Oct 24, 2023
+27
W
S
P
Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against coronaviruses that cause severe disease, for anticipating novel pandemic-causing viruses, and to respond more effectively to SARS-CoV-2 variants. The emergence of the Omicron variant of SARS-CoV-2 has illustrated the limitations of solely targeting the receptor binding domain (RBD) of the envelope Spike (S)-protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors that target a conserved S2 region in the fusion machinery on betacoronavirus spikes. Select bnAbs show broad in vivo protection against all three pathogenic betacoronaviruses, SARS-CoV-1, SARS-CoV-2 and MERS-CoV, that have spilled over into humans in the past 20 years to cause severe disease. The bnAbs provide new opportunities for antibody-based interventions and key insights for developing pan-betacoronavirus vaccines.
14

Cross-neutralization of a SARS-CoV-2 antibody to a functionally conserved site is mediated by avidity

Hejun Liu et al.Oct 24, 2023
+11
M
N
H
Most antibodies isolated from COVID-19 patients are specific to SARS-CoV-2. COVA1-16 is a relatively rare antibody that also cross-neutralizes SARS-CoV. Here we determined a crystal structure of COVA1-16 Fab with the SARS-CoV-2 RBD, and a negative-stain EM reconstruction with the spike glycoprotein trimer, to elucidate the structural basis of its cross-reactivity. COVA1-16 binds a highly conserved epitope on the SARS-CoV-2 RBD, mainly through a long CDR H3, and competes with ACE2 binding due to steric hindrance rather than epitope overlap. COVA1-16 binds to a flexible up conformation of the RBD on the spike and relies on antibody avidity for neutralization. These findings, along with structural and functional rationale for the epitope conservation, provide a blueprint for development of more universal SARS-like coronavirus vaccines and therapies.
14
Paper
Citation15
0
Save
6

An alternative binding mode of IGHV3-53 antibodies to the SARS-CoV-2 receptor binding domain

Nicholas Wu et al.Oct 24, 2023
+10
H
M
N
ABSTRACT IGHV3-53-encoded neutralizing antibodies are commonly elicited during SARS-CoV-2 infection and target the receptor-binding domain (RBD) of the spike (S) protein. Such IGHV3-53 antibodies generally have a short CDR H3 due to structural constraints in binding the RBD (mode A). However, a small subset of IGHV3-53 antibodies to the RBD contain a longer CDR H3. Crystal structures of two IGHV3-53 neutralizing antibodies here demonstrate that a longer CDR H3 can be accommodated in a different binding mode (mode B). These two classes of IGHV3-53 antibodies both target the ACE2 receptor binding site, but with very different angles of approach and molecular interactions. Overall, these findings emphasize the versatility of IGHV3-53 in this common antibody response to SARS-CoV-2, where conserved IGHV3-53 germline-encoded features can be combined with very different CDR H3 lengths and light chains for SARS-CoV-2 RBD recognition and virus neutralization.
6
Citation15
0
Save
0

Vulnerabilities in coronavirus glycan shields despite extensive glycosylation

Yasunori Watanabe et al.May 6, 2020
+7
J
Z
Y
Abstract Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses (CoVs) are zoonotic pathogens with high fatality rates and pandemic potential. Vaccine development has focussed on the principal target of the neutralizing humoral immune response, the spike (S) glycoprotein, which mediates receptor recognition and membrane fusion. Coronavirus S proteins are extensively glycosylated viral fusion proteins, encoding around 69-87 N-linked glycosylation sites per trimeric spike. Using a multifaceted structural approach, we reveal a specific area of high glycan density on MERS S that results in the formation of under-processed oligomannose-type glycan clusters, which was absent on SARS and HKU1 CoVs. We provide a comparison of the global glycan density of coronavirus spikes with other viral proteins including HIV-1 envelope, Lassa virus glycoprotein complex, and influenza hemagglutinin, where glycosylation plays a known role in shielding immunogenic epitopes. Consistent with the ability of the antibody-mediated immune response to effectively target and neutralize coronaviruses, we demonstrate that the glycans of coronavirus spikes are not able to form an efficacious high-density global shield to thwart the humoral immune response. Overall, our data reveal how differential organisation of viral glycosylation across class I viral fusion proteins influence not only individual glycan compositions but also the immunological pressure across the viral protein surface.
0
Paper
Citation14
0
Save
0

Single-component, self-assembling, protein nanoparticles presenting the receptor binding domain and stabilized spike as SARS-CoV-2 vaccine candidates

Linling He et al.Dec 1, 2020
+6
Y
X
L
ABSTRACT Vaccination against SARS-CoV-2 provides an effective tool to combat the COIVD-19 pandemic. Here, we combined antigen optimization and nanoparticle display to develop vaccine candidates for SARS-CoV-2. We first displayed the receptor-binding domain (RBD) on three self-assembling protein nanoparticle (SApNP) platforms using the SpyTag/SpyCatcher system. We then identified heptad repeat 2 (HR2) in S2 as the cause of spike metastability, designed an HR2-deleted glycine-capped spike (S2GΔHR2), and displayed S2GΔHR2 on SApNPs. An antibody column specific for the RBD enabled tag-free vaccine purification. In mice, the 24-meric RBD-ferritin SApNP elicited a more potent neutralizing antibody (NAb) response than the RBD alone and the spike with two stabilizing proline mutations in S2 (S2P). S2GΔHR2 elicited two-fold-higher NAb titers than S2P, while S2GΔHR2 SApNPs derived from multilayered E2p and I3-01v9 60-mers elicited up to 10-fold higher NAb titers. The S2GΔHR2-presenting I3-01v9 SApNP also induced critically needed T-cell immunity, thereby providing a promising vaccine candidate. ONE-SENTENCE SUMMARY The SARS-CoV-2 receptor binding domain and S2GΔHR2 spike elicited potent immune responses when displayed on protein nanoparticles as vaccine candidates.
0
Citation9
0
Save
1

A large-scale systematic survey of SARS-CoV-2 antibodies reveals recurring molecular features

Yiquan Wang et al.Oct 24, 2023
+2
J
M
Y
In the past two years, the global research in combating COVID-19 pandemic has led to isolation and characterization of numerous human antibodies to the SARS-CoV-2 spike. This enormous collection of antibodies provides an unprecedented opportunity to study the antibody response to a single antigen. From mining information derived from 88 research publications and 13 patents, we have assembled a dataset of âˆ¼8,000 human antibodies to the SARS-CoV-2 spike from >200 donors. Analysis of antibody targeting of different domains of the spike protein reveals a number of common (public) responses to SARS-CoV-2, exemplified via recurring IGHV/IGK(L)V pairs, CDR H3 sequences, IGHD usage, and somatic hypermutation. We further present a proof-of-concept for prediction of antigen specificity using deep learning to differentiate sequences of antibodies to SARS-CoV-2 spike and to influenza hemagglutinin. Overall, this study not only provides an informative resource for antibody and vaccine research, but fundamentally advances our molecular understanding of public antibody responses to a viral pathogen.
10

Ultrapotent bispecific antibodies neutralize emerging SARS-CoV-2 variants

Hyeseon Cho et al.Oct 24, 2023
+37
D
K
H
The emergence of SARS-CoV-2 variants that threaten the efficacy of existing vaccines and therapeutic antibodies underscores the urgent need for new antibody-based tools that potently neutralize variants by targeting multiple sites of the spike protein. We isolated 216 monoclonal antibodies targeting SARS-CoV-2 from plasmablasts and memory B cells of COVID-19 patients. The three most potent antibodies targeted distinct regions of the RBD, and all three neutralized the SARS-CoV-2 variants B.1.1.7 and B.1.351. The crystal structure of the most potent antibody, CV503, revealed that it binds to the ridge region of SARS-CoV-2 RBD, competes with the ACE2 receptor, and has limited contact with key variant residues K417, E484 and N501. We designed bispecific antibodies by combining non-overlapping specificities and identified five ultrapotent bispecific antibodies that inhibit authentic SARS-CoV-2 infection at concentrations of <1 ng/mL. Through a novel mode of action three bispecific antibodies cross-linked adjacent spike proteins using dual NTD/RBD specificities. One bispecific antibody was >100-fold more potent than a cocktail of its parent monoclonals in vitro and prevented clinical disease in a hamster model at a 2.5 mg/kg dose. Notably, six of nine bispecific antibodies neutralized B.1.1.7, B.1.351 and the wild-type virus with comparable potency, despite partial or complete loss of activity of at least one parent monoclonal antibody against B.1.351. Furthermore, a bispecific antibody that neutralized B.1.351 protected against SARS-CoV-2 expressing the crucial E484K mutation in the hamster model. Thus, bispecific antibodies represent a promising next-generation countermeasure against SARS-CoV-2 variants of concern.
10
Citation9
0
Save
1

Broadly neutralizing antibodies to SARS-related viruses can be readily induced in rhesus macaques

Wanting He et al.Oct 24, 2023
+31
S
M
W
ABSTRACT To prepare for future coronavirus (CoV) pandemics, it is desirable to generate vaccines capable of eliciting neutralizing antibody responses against multiple CoVs. Because of the phylogenetic similarity to humans, rhesus macaques are an animal model of choice for many virus-challenge and vaccine-evaluation studies, including SARS-CoV-2. Here, we show that immunization of macaques with SARS-CoV-2 spike (S) protein generates potent receptor binding domain cross- neutralizing antibody (nAb) responses to both SARS-CoV-2 and SARS-CoV-1, in contrast to human infection or vaccination where responses are typically SARS-CoV-2-specific. Furthermore, the macaque nAbs are equally effective against SARS-CoV-2 variants of concern. Structural studies show that different immunodominant sites are targeted by the two primate species. Human antibodies generally target epitopes strongly overlapping the ACE2 receptor binding site (RBS), whereas the macaque antibodies recognize a relatively conserved region proximal to the RBS that represents another potential pan-SARS-related virus site rarely targeted by human antibodies. B cell repertoire differences between the two primates appear to significantly influence the vaccine response and suggest care in the use of rhesus macaques in evaluation of vaccines to SARS-related viruses intended for human use. ONE SENTENCE SUMMARY Broadly neutralizing antibodies to an unappreciated site of conservation in the RBD in SARS- related viruses can be readily induced in rhesus macaques because of distinct properties of the naïve macaque B cell repertoire that suggest prudence in the use of the macaque model in SARS vaccine evaluation and design.
1
Paper
Citation8
0
Save
Load More