Abstract Motivation The SARS-CoV-2 variants emerging from South Africa (501.V2) and the UK (B.1.1.7) necessitate rapid assessment of the effects of the corresponding amino acid substitutions in the spike (S) receptor-binding domain (RBD) of the variants on the interactions with the human ACE2 receptor and monoclonal antibodies (mAbs) reported earlier to neutralize the spike. Results Molecular modeling and simulations reveal that N501Y, shared by both variants, increases ACE2 binding affinity, and may impact the collective dynamics of the ACE2-RBD complex, occupying a central hinge site that modulates the overall dynamics of the complex. In contrast, the substitutions K417N and E484K in the South African variant 501.V2 would reduce the ACE2-binding affinity by abolishing two interfacial salt bridges that facilitate RBD binding to ACE2, K417(S)-D30(ACE2) and E484 (S)-K31(ACE2). These two mutations may thus be more than compensating the attractive effect induced by N501Y, overall resulting in an ACE2-binding affinity comparable to that of the wildtype RBD. Further analysis of the impact of these mutations on the interactions with mAbs targeting the spike indicate that the substitutions K417N and E484K may also abolish the salt bridges between the spike and selected mAbs, such as REGN10933, BD23, H11_H4, and C105, thus reducing the binding affinity and effectiveness of these mAbs. Contact bahar@pitt.edu Supplementary information Supplementary data are available at Bioinformatics online.