SL
Sha Liao
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
BGI Group (China), Botswana Geoscience Institute, Northwest University
+ 9 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(79% Open Access)
Cited by:
58
h-index:
20
/
i10-index:
36
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Global Spatial Transcriptome of Macaque Brain at Single-Cell Resolution

Ao Chen et al.Oct 24, 2023
+95
Y
Y
A
Abstract Global profile of gene expression at single-cell resolution remains to be determined for primates. Using a recently developed technology (“Stereo-seq”), we have obtained a comprehensive single-cell spatial transcriptome map at the whole-brain level for cynomolgus monkeys, with ∼600 genes per cell for 10 μm-thick coronal sections (up to 15 cm 2 in size). Large-scale single-nucleus RNA-seq analysis for ∼1 million cells helped to identify cell types corresponding to Stereo-seq gene expression profiles, providing a 3-D cell type atlas of the monkey brain. Quantitative analysis of Stereo-seq data revealed molecular fingerprints that mark distinct neocortical layers and subregions, as well as domains within subcortical structures including hippocampus, thalamus, striatum, cerebellum, hypothalamus and claustrum. Striking whole-brain topography and coordinated patterns were found in the expression of genes encoding receptors and transporters for neurotransmitters and neuromodulators. These results pave the way for cellular and molecular understanding of organizing principles of the primate brain.
1
Citation16
0
Save
47

Spatially-resolved transcriptomics analyses of invasive fronts in solid tumors

Jiayan Yan et al.Oct 24, 2023
+35
F
Y
J
Abstract Solid tumors are complex ecosystems, and heterogeneity is the major challenge for overcoming tumor relapse and metastasis. Uncovering the spatial heterogeneity of cell types and functional states in tumors is essential for developing effective treatment, especially in invasive fronts of tumor, the most active region for tumor cells infiltration and invasion. We firstly used SpaTial Enhanced REsolution Omics-sequencing (Stereo-seq) with a nanoscale resolution to characterize the tumor microenvironment of intrahepatic cholangiocarcinoma (ICC). Enrichment of distinctive immune cells, suppressive immune microenvironment and metabolic reprogramming of tumor cells were identified in the 500µm-wide zone centered bilaterally on the tumor boundary, namely invasive fronts of tumor. Furthermore, we found the damaged states of hepatocytes with overexpression of Serum Amyloid A (SAA) in invasive fronts, recruiting macrophages for facilitating further tumor invasion, and thus resulting in a worse prognosis. We also confirmed these findings in hepatocellular carcinoma and other liver metastatic cancers. Our work highlights the remarkable potential of high-resolution-spatially resolved transcriptomic approaches to provide meaningful biological insights for comprehensively dissecting the tumor ecosystem and guiding the development of novel therapeutic strategies for solid tumors.
13

Spateo: multidimensional spatiotemporal modeling of single-cell spatial transcriptomics

Xiaojie Qiu et al.Oct 24, 2023
+39
J
D
X
Cells do not live in a vacuum, but in a milieu defined by cell–cell communication that can be measured via emerging high-resolution spatial transcriptomics approaches. However, analytical tools that fully leverage such data for kinetic modeling remain lacking. Here we present Spateo ( aristoteleo/spateo-release ), a general framework for quantitative spatiotemporal modeling of single-cell resolution spatial transcriptomics. Spateo delivers novel methods for digitizing spatial layers/columns to identify spatially-polar genes, and develops a comprehensive framework of cell-cell interaction to reveal spatial effects of niche factors and cell type-specific ligand-receptor interactions. Furthermore, Spateo reconstructs 3D models of whole embryos, and performs 3D morphometric analyses. Lastly, Spateo introduces the concept of “morphometric vector field” of cell migrations, and integrates spatial differential geometry to unveil regulatory programs underlying various organogenesis patterns of Drosophila. Thus, Spateo enables the study of the ecology of organs at a molecular level in 3D space, beyond isolated single cells.
26

StereoCell enables highly accurate single-cell segmentation for spatial transcriptomics

Mei Li et al.Oct 24, 2023
+22
M
H
M
Abstract Owing to recent advances in resolution and field-of-view, spatially resolved sequencing has emerged as a cutting-edge technology that provides a technical foundation for the interpretation of large tissues at the single-cell level. To generate accurate single-cell spatial gene expression profiles from high-resolution spatial omics data and associated images, a powerful one-stop toolbox is required. Here, we present StereoCell, an image-facilitated cell segmentation framework for high-resolution and large field-of-view spatial transcriptomics. StereoCell provides a comprehensive and systematic platform for the generation of high-confidence single-cell spatial data, which includes image stitching, registration, nuclei segmentation, and molecule labeling. During image stitching and molecule labeling, StereoCell delivers better-performing algorithms to reduce stitching error and time, in addition to improving the signal-to-noise ratio of single-cell gene expression data, in comparison with existing methods. Additionally, StereoCell has been shown to obtain highly accurate single-cell spatial data using mouse brain tissue, which facilitated clustering and annotation.
0

Deciphering spatial domains from spatial multi-omics with SpatialGlue

Yahui Long et al.Sep 6, 2024
+17
R
K
Y
Advances in spatial omics technologies now allow multiple types of data to be acquired from the same tissue slice. To realize the full potential of such data, we need spatially informed methods for data integration. Here, we introduce SpatialGlue, a graph neural network model with a dual-attention mechanism that deciphers spatial domains by intra-omics integration of spatial location and omics measurement followed by cross-omics integration. We demonstrated SpatialGlue on data acquired from different tissue types using different technologies, including spatial epigenome-transcriptome and transcriptome-proteome modalities. Compared to other methods, SpatialGlue captured more anatomical details and more accurately resolved spatial domains such as the cortex layers of the brain. Our method also identified cell types like spleen macrophage subsets located at three different zones that were not available in the original data annotations. SpatialGlue scales well with data size and can be used to integrate three modalities. Our spatial multi-omics analysis tool combines the information from complementary omics modalities to obtain a holistic view of cellular and tissue properties.
0
Citation6
0
Save
1

SAW: An efficient and accurate data analysis workflow for Stereo-seq spatial transcriptomics

Chun Gong et al.Oct 24, 2023
+14
L
S
C
Abstract The basic analysis steps of spatial transcriptomics involve obtaining gene expression information from both space and cells. This process requires a set of tools to be completed, and existing tools face performance issues when dealing with large data sets. These issues include computationally intensive spatial localization, RNA genome alignment, and excessive memory usage in large chip scenarios. These problems affect the applicability and efficiency of the process. To address these issues, a high-performance and accurate spatial transcriptomics data analysis workflow called Stereo-Seq Analysis Workflow (SAW) has been developed for the Stereo-Seq technology developed by BGI. This workflow includes mRNA spatial position reconstruction, genome alignment, gene expression matrix generation and clustering, and generate results files in a universal format for subsequent personalized analysis. The excutation time for the entire analysis process is ∼148 minutes on 1G reads 1*1 cm chip test data, 1.8 times faster than unoptimized workflow.
0

Spatially resolved molecular and cellular atlas of the mouse brain

Lei Han et al.Dec 5, 2023
+112
Z
Z
L
A comprehensive atlas of genes, cell types, and their spatial distribution across a whole mammalian brain is fundamental for understanding function of the brain. Here, using snRNA-seq and Stereo-seq techniques, we generated a mouse brain atlas with spatial information for 308 cell clusters with single-cell resolution involving over 6 million cells as well as for 29,655 genes. We have identified new astrocyte clusters, and demonstrated that distinct cell clusters exhibit preference for cortical subregions. In addition, we identified 155 genes exhibiting regional specificity in the brainstem, and 513 long non-coding RNA exhibited regional specificity in the adult brain. Parcellation of brain regions based on spatial transcriptomic information showed large overlap with that by traditional method. Furthermore, we have uncovered 411 transcription factor regulons with spatiotemporal specificity during development. Thus, our study has discovered genes and regulon with spatiotemporal specificity, and provided a high-resolution spatial transcriptomic atlas of the mouse brain.
0
0
Save
0

Access COI barcode efficiently using high throughput Single End 400 bp sequencing

Chentao Yang et al.May 7, 2020
+7
G
S
C
Over the last decade, the rapid development of high-throughput sequencing platforms has accelerated species description and assisted morphological classification through DNA barcoding. However, constraints in barcoding costs led to unbalanced efforts which prevented accurate taxonomic identification for biodiversity studies. We present a high throughput sequencing approach based on the HIFI-SE pipeline which takes advantage of Single-End 400 bp (SE400) sequencing data generated by BGISEQ-500 to produce full-length Cytochrome c oxidase subunit I (COI) barcodes from pooled polymerase chain reaction amplicons. HIFI-SE was written in Python and included four function modules of filter, assign, assembly and taxonomy. We applied the HIFI-SE to a test plate which contained 96 samples (30 coral, 64 insects and 2 blank controls) and delivered a total of 86 fully assembled HIFI COI barcodes. By comparing to their corresponding Sanger sequences (72 sequences available), it showed that most of the samples (98.61%, 71/72) were correctly and accurately assembled, including 46 samples that had a similarity of 100% and 25 of ca. 99%. Our approach can produce standard full-length barcodes cost efficiently, allowing DNA barcoding for global biomes which will advance DNA-based species identification for various ecosystems and improved quarantine biosecurity efforts.
0

StereoSiTE: A framework to spatially and quantitatively profile the cellular neighborhood organized iTME

Xing Liu et al.Sep 15, 2023
+15
C
C
X
Abstract With emerging of Spatial Transcriptomics (ST) technology, a powerful algorithmic framework to quantitatively evaluate the active cell-cell interactions in the bio-function associated iTME unit will pave the ways to understand the mechanism underlying tumor biology. This study provides the StereoSiTE incorporating open source bioinformatics tools with the self-developed algorithm, SCII, to dissect a cellular neighborhood (CN) organized iTME based on cellular compositions, and to accurately infer the functional cell-cell communications with quantitatively defined interaction intensity in ST data. We applied StereoSiTE to deeply decode ST data of the xenograft models receiving immunoagonist. Results demonstrated that the neutrophils dominated CN5 might attribute to iTME remodeling after treatment. To be noted, SCII analyzed the spatially resolved interaction intensity inferring a neutrophil leading communication network which was proved to actively function by analysis of Transcriptional Factor Regulon and Protein-Protein Interaction. Altogether, StereoSiTE is a promising framework for ST data to spatially reveal tumoribiology mechanisms.
0

CoolMPS™: Advanced massively parallel sequencing using antibodies specific to each natural nucleobase

Snezana Drmanac et al.May 6, 2020
+33
L
M
S
Massively parallel sequencing (MPS) on DNA nanoarrays provides billions of reads at relatively low cost and enables a multitude of genomic applications. Further improvement in read length, sequence quality and cost reduction will enable more affordable and accurate comprehensive health monitoring tests. Currently the most efficient MPS uses dye-labeled reversibly terminated nucleotides (RTs) that are expensive to make and challenging to incorporate. Furthermore, a part of the dye-linker (scar) remains on the nucleobase after cleavage and interferes with subsequent sequencing cycles. We describe here the development of a novel MPS chemistry (CoolMPS™) utilizing unlabeled RTs and four natural nucleobase-specific fluorescently labeled antibodies with fast (30 sec) binding. We implemented CoolMPS™ on MGI′s PCR-free DNBSEQ MPS platform using arrays of 200nm DNA nanoballs (DNBs) generated by rolling circle replication and demonstrate 3-fold improvement in signal intensity and elimination of scar interference. Single-end 100-400 base and pair-end 2x150 base reads with high quality were readily generated with low out-of-phase incorporation. Furthermore, DNBs with less than 50 template copies were successfully sequenced by strong-signal CoolMPS ™ with 3-times higher accuracy than in standard MPS. CoolMPS™ chemistry based on natural nucleobases has potential to provide longer, more accurate and less expensive MPS reads, including highly accurate ″4-color sequencing″ on the most efficient dye-crosstalk-free 2-color imagers with an estimated sequencing error rate of 0.00058% (one error in 170,000 base calls) in a proof-of-concept demonstration.
Load More