AR
Adrián Roitberg
Author with expertise in Quantum Coherence in Photosynthesis and Aqueous Systems
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
33
(52% Open Access)
Cited by:
17,807
h-index:
62
/
i10-index:
164
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Comparison of multiple Amber force fields and development of improved protein backbone parameters

Viktor Horn̆ák et al.Sep 15, 2006
Abstract The ff94 force field that is commonly associated with the Amber simulation package is one of the most widely used parameter sets for biomolecular simulation. After a decade of extensive use and testing, limitations in this force field, such as over‐stabilization of α‐helices, were reported by us and other researchers. This led to a number of attempts to improve these parameters, resulting in a variety of “Amber” force fields and significant difficulty in determining which should be used for a particular application. We show that several of these continue to suffer from inadequate balance between different secondary structure elements. In addition, the approach used in most of these studies neglected to account for the existence in Amber of two sets of backbone φ/ψ dihedral terms. This led to parameter sets that provide unreasonable conformational preferences for glycine. We report here an effort to improve the φ/ψ dihedral terms in the ff99 energy function. Dihedral term parameters are based on fitting the energies of multiple conformations of glycine and alanine tetrapeptides from high level ab initio quantum mechanical calculations. The new parameters for backbone dihedrals replace those in the existing ff99 force field. This parameter set, which we denote ff99SB, achieves a better balance of secondary structure elements as judged by improved distribution of backbone dihedrals for glycine and alanine with respect to PDB survey data. It also accomplishes improved agreement with published experimental data for conformational preferences of short alanine peptides and better accord with experimental NMR relaxation data of test protein systems. Proteins 2006. © 2006 Wiley‐Liss, Inc.
0

ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost

Justin Smith et al.Jan 1, 2017
Deep learning is revolutionizing many areas of science and technology, especially image, text, and speech recognition. In this paper, we demonstrate how a deep neural network (NN) trained on quantum mechanical (QM) DFT calculations can learn an accurate and transferable potential for organic molecules. We introduce ANAKIN-ME (Accurate NeurAl networK engINe for Molecular Energies) or ANI for short. ANI is a new method designed with the intent of developing transferable neural network potentials that utilize a highly-modified version of the Behler and Parrinello symmetry functions to build single-atom atomic environment vectors (AEV) as a molecular representation. AEVs provide the ability to train neural networks to data that spans both configurational and conformational space, a feat not previously accomplished on this scale. We utilized ANI to build a potential called ANI-1, which was trained on a subset of the GDB databases with up to 8 heavy atoms in order to predict total energies for organic molecules containing four atom types: H, C, N, and O. To obtain an accelerated but physically relevant sampling of molecular potential surfaces, we also proposed a Normal Mode Sampling (NMS) method for generating molecular conformations. Through a series of case studies, we show that ANI-1 is chemically accurate compared to reference DFT calculations on much larger molecular systems (up to 54 atoms) than those included in the training data set.
0

Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning

Chad Hopkins et al.Mar 16, 2015
Previous studies have shown that the method of hydrogen mass repartitioning (HMR) is a potentially useful tool for accelerating molecular dynamics (MD) simulations. By repartitioning the mass of heavy atoms into the bonded hydrogen atoms, it is possible to slow the highest-frequency motions of the macromolecule under study, thus allowing the time step of the simulation to be increased by up to a factor of 2. In this communication, we investigate further how this mass repartitioning allows the simulation time step to be increased in a stable fashion without significantly increasing discretization error. To this end, we ran a set of simulations with different time steps and mass distributions on a three-residue peptide to get a comprehensive view of the effect of mass repartitioning and time step increase on a system whose accessible phase space is fully explored in a relatively short amount of time. We next studied a 129-residue protein, hen egg white lysozyme (HEWL), to verify that the observed behavior extends to a larger, more-realistic, system. Results for the protein include structural comparisons from MD trajectories, as well as comparisons of pKa calculations via constant-pH MD. We also calculated a potential of mean force (PMF) of a dihedral rotation for the MTS [(1-oxyl-2,2,5,5-tetramethyl-pyrroline-3-methyl)methanethiosulfonate] spin label via umbrella sampling with a set of regular MD trajectories, as well as a set of mass-repartitioned trajectories with a time step of 4 fs. Since no significant difference in kinetics or thermodynamics is observed by the use of fast HMR trajectories, further evidence is provided that long-time-step HMR MD simulations are a viable tool for accelerating MD simulations for molecules of biochemical interest.
0

Less is more: Sampling chemical space with active learning

Justin Smith et al.May 22, 2018
The development of accurate and transferable machine learning (ML) potentials for predicting molecular energetics is a challenging task. The process of data generation to train such ML potentials is a task neither well understood nor researched in detail. In this work, we present a fully automated approach for the generation of datasets with the intent of training universal ML potentials. It is based on the concept of active learning (AL) via Query by Committee (QBC), which uses the disagreement between an ensemble of ML potentials to infer the reliability of the ensemble's prediction. QBC allows the presented AL algorithm to automatically sample regions of chemical space where the ML potential fails to accurately predict the potential energy. AL improves the overall fitness of ANAKIN-ME (ANI) deep learning potentials in rigorous test cases by mitigating human biases in deciding what new training data to use. AL also reduces the training set size to a fraction of the data required when using naive random sampling techniques. To provide validation of our AL approach, we develop the COmprehensive Machine-learning Potential (COMP6) benchmark (publicly available on GitHub) which contains a diverse set of organic molecules. Active learning-based ANI potentials outperform the original random sampled ANI-1 potential with only 10% of the data, while the final active learning-based model vastly outperforms ANI-1 on the COMP6 benchmark after training to only 25% of the data. Finally, we show that our proposed AL technique develops a universal ANI potential (ANI-1x) that provides accurate energy and force predictions on the entire COMP6 benchmark. This universal ML potential achieves a level of accuracy on par with the best ML potentials for single molecules or materials, while remaining applicable to the general class of organic molecules composed of the elements CHNO.
Load More