TM
Travis Mallard
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
28
(71% Open Access)
Cited by:
1,654
h-index:
27
/
i10-index:
44
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits

Andrew Grotzinger et al.Apr 8, 2019
Genetic correlations estimated from genome-wide association studies (GWASs) reveal pervasive pleiotropy across a wide variety of phenotypes. We introduce genomic structural equation modelling (genomic SEM): a multivariate method for analysing the joint genetic architecture of complex traits. Genomic SEM synthesizes genetic correlations and single-nucleotide polymorphism heritabilities inferred from GWAS summary statistics of individual traits from samples with varying and unknown degrees of overlap. Genomic SEM can be used to model multivariate genetic associations among phenotypes, identify variants with effects on general dimensions of cross-trait liability, calculate more predictive polygenic scores and identify loci that cause divergence between traits. We demonstrate several applications of genomic SEM, including a joint analysis of summary statistics from five psychiatric traits. We identify 27 independent single-nucleotide polymorphisms not previously identified in the contributing univariate GWASs. Polygenic scores from genomic SEM consistently outperform those from univariate GWASs. Genomic SEM is flexible and open ended, and allows for continuous innovation in multivariate genetic analysis.
0
Citation637
0
Save
0

Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects

Laurence Howe et al.May 1, 2022
Estimates from genome-wide association studies (GWAS) of unrelated individuals capture effects of inherited variation (direct effects), demography (population stratification, assortative mating) and relatives (indirect genetic effects). Family-based GWAS designs can control for demographic and indirect genetic effects, but large-scale family datasets have been lacking. We combined data from 178,086 siblings from 19 cohorts to generate population (between-family) and within-sibship (within-family) GWAS estimates for 25 phenotypes. Within-sibship GWAS estimates were smaller than population estimates for height, educational attainment, age at first birth, number of children, cognitive ability, depressive symptoms and smoking. Some differences were observed in downstream SNP heritability, genetic correlations and Mendelian randomization analyses. For example, the within-sibship genetic correlation between educational attainment and body mass index attenuated towards zero. In contrast, analyses of most molecular phenotypes (for example, low-density lipoprotein-cholesterol) were generally consistent. We also found within-sibship evidence of polygenic adaptation on taller height. Here, we illustrate the importance of family-based GWAS data for phenotypes influenced by demographic and indirect genetic effects.
0
Citation242
0
Save
200

Within-sibship GWAS improve estimates of direct genetic effects

Laurence Howe et al.Mar 7, 2021
Abstract Estimates from genome-wide association studies (GWAS) represent a combination of the effect of inherited genetic variation (direct effects), demography (population stratification, assortative mating) and genetic nurture from relatives (indirect genetic effects). GWAS using family-based designs can control for demography and indirect genetic effects, but large-scale family datasets have been lacking. We combined data on 159,701 siblings from 17 cohorts to generate population (between-family) and within-sibship (within-family) estimates of genome-wide genetic associations for 25 phenotypes. We demonstrate that existing GWAS associations for height, educational attainment, smoking, depressive symptoms, age at first birth and cognitive ability overestimate direct effects. We show that estimates of SNP-heritability, genetic correlations and Mendelian randomization involving these phenotypes substantially differ when calculated using within-sibship estimates. For example, genetic correlations between educational attainment and height largely disappear. In contrast, analyses of most clinical phenotypes (e.g. LDL-cholesterol) were generally consistent between population and within-sibship models. We also report compelling evidence of polygenic adaptation on taller human height using within-sibship data. Large-scale family datasets provide new opportunities to quantify direct effects of genetic variation on human traits and diseases.
200
Citation65
0
Save
38

The genetics of cortical organisation and development: a study of 2,347 neuroimaging phenotypes

Varun Warrier et al.Sep 8, 2022
Abstract Our understanding of the genetic architecture of the human cerebral cortex is limited both in terms of the diversity of brain structural phenotypes and the anatomical granularity of their associations with genetic variants. Here, we conducted genome-wide association meta-analysis of 13 structural and diffusion magnetic resonance imaging derived cortical phenotypes, measured globally and at 180 bilaterally averaged regions in 36,843 individuals from the UK Biobank and the ABCD cohorts. These phenotypes include cortical thickness, surface area, grey matter volume, and measures of folding, neurite density, and water diffusion. We identified 4,349 experiment-wide significant loci associated with global and regional phenotypes. Multiple lines of analyses identified four genetic latent structures and causal relationships between surface area and some measures of cortical folding. These latent structures partly relate to different underlying gene expression trajectories during development and are enriched for different cell types. We also identified differential enrichment for neurodevelopmental and constrained genes and demonstrate that common genetic variants associated with surface area and volume specifically are associated with cephalic disorders. Finally, we identified complex inter-phenotype and inter-regional genetic relationships among the 13 phenotypes which reflect developmental differences among them. These analyses help refine the role of common genetic variants in human cortical development and organisation. One sentence summary GWAS of 2,347 neuroimaging phenotypes shed light on the global and regional genetic organisation of the cortex, underlying cellular and developmental processes, and links to neurodevelopmental and cephalic disorders.
38
Citation10
0
Save
71

Transcriptional Cartography Integrates Multiscale Biology of the Human Cortex

Konrad Wagstyl et al.Jun 14, 2022
Abstract The cerebral cortex underlies many of our unique strengths and vulnerabilities - but efforts to understand human cortical organization are challenged by reliance on incompatible measurement methods at different spatial scales. Macroscale features such as cortical folding and functional activation are accessed through spatially dense neuroimaging maps, whereas microscale cellular and molecular features are typically measured with sparse postmortem sampling. Here, we integrate these distinct windows on brain organization by building upon existing postmortem data to impute, validate and analyze a library of spatially dense neuroimaging-like maps of human cortical gene expression. These maps allow spatially unbiased discovery of cortical zones with extreme transcriptional profiles or unusually rapid transcriptional change which index distinct microstructure and predict neuroimaging measures of cortical folding and functional activation. Modules of spatially coexpressed genes define a family of canonical expression maps that integrate diverse spatial scales and temporal epochs of human brain organization - ranging from protein-protein interactions to large-scale systems for cognitive processing. These module maps also parse neuropsychiatric risk genes into subsets which tag distinct cyto-laminar features and differentially predict the location of altered cortical anatomy and gene expression in patients. Taken together, the methods, resources and findings described here advance our understanding of human cortical organization and offer flexible bridges to connect scientific fields operating at different spatial scales of human brain research.
Load More