RD
Runze Dong
Author with expertise in DNA Nanotechnology and Bioanalytical Applications
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
59
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
44

Design of proteins presenting discontinuous functional sites using deep learning

Doug Tischer et al.Nov 29, 2020
Abstract An outstanding challenge in protein design is the design of binders against therapeutically relevant target proteins via scaffolding the discontinuous binding interfaces present in their often large and complex binding partners. There is currently no method for sampling through the almost unlimited number of possible protein structures for those capable of scaffolding a specified discontinuous functional site; instead, current approaches make the sampling problem tractable by restricting search to structures composed of pre-defined secondary structural elements. Such restriction of search has the disadvantage that considerable trial and error can be required to identify architectures capable of scaffolding an arbitrary discontinuous functional site, and only a tiny fraction of possible architectures can be explored. Here we build on recent advances in de novo protein design by deep network hallucination to develop a solution to this problem which eliminates the need to pre-specify the structure of the scaffolding in any way. We use the trRosetta residual neural network, which maps input sequences to predicted inter-residue distances and orientations, to compute a loss function which simultaneously rewards recapitulation of a desired structural motif and the ideality of the surrounding scaffold, and generate diverse structures harboring the desired binding interface by optimizing this loss function by gradient descent. We illustrate the power and versatility of the method by scaffolding binding sites from proteins involved in key signaling pathways with a wide range of secondary structure compositions and geometries. The method should be broadly useful for designing small stable proteins containing complex functional sites.