DT
Dylan Taylor
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
135
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

A refined characterization of large-scale genomic differences in the first complete human genome

Xiangyu Yang et al.Dec 19, 2022
Abstract The first telomere-to-telomere (T2T) human genome assembly (T2T-CHM13) release was a milestone in human genomics. The T2T-CHM13 genome assembly extends our understanding of telomeres, centromeres, segmental duplication, and other complex regions. The current human genome reference (GRCh38) has been widely used in various human genomic studies. However, the large-scale genomic differences between these two important genome assemblies are not characterized in detail yet. Here, we identify 590 discrepant regions (∼226 Mbp) in total. In addition to the previously reported ‘non-syntenic’ regions, we identify 67 additional large-scale discrepant regions and precisely categorize them into four structural types with a newly developed website tool (SynPlotter). The discrepant regions (∼20.4 Mbp) excluding telomeric and centromeric regions are highly structurally polymorphic in humans, where copy number variation are likely associated with various human disease and disease susceptibility, such as immune and neurodevelopmental disorders. The analyses of a newly identified discrepant region—the KLRC gene cluster—shows that the depletion of KLRC2 by a single deletion event is associated with natural killer cell differentiation in ∼20% of humans. Meanwhile, the rapid amino acid replacements within KLRC3 is consistent with the action of natural selection during primate evolution. Our study furthers our understanding of the large-scale structural variation differences between these two crucial human reference genomes and future interpretation of studies of human genetic variation.
5
Citation2
0
Save
79

Local adaptation and archaic introgression shape global diversity at human structural variant loci

Yan Shu et al.Jan 26, 2021
Abstract Large genomic insertions, deletions, and inversions are a potent source of functional and fitness-altering variation, but are challenging to resolve with short-read DNA sequencing alone. While recent long-read sequencing technologies have greatly expanded the catalog of structural variants (SVs), their costs have so far precluded their application at population scales. Given these limitations, the role of SVs in human adaptation remains poorly characterized. Here, we used a graph-based approach to genotype 107,866 long-read-discovered SVs in short-read sequencing data from diverse human populations. We then applied an admixture-aware method to scan these SVs for patterns of population-specific frequency differentiation—a signature of local adaptation. We identified 220 SVs exhibiting extreme frequency differentiation, including several SVs that were among the lead variants at their corresponding loci. The top two signatures traced to separate insertion and deletion polymorphisms at the immunoglobulin heavy chain locus, together tagging a 325 Kbp haplotype that swept to high frequency and was subsequently fragmented by recombination. Alleles defining this haplotype are nearly fixed (60-95%) in certain Southeast Asian populations, but are rare or absent from other global populations composing the 1000 Genomes Project. Further investigation revealed that the haplotype closely matches with sequences observed in two of three high-coverage Neanderthal genomes, providing strong evidence of a Neanderthal-introgressed origin. This extraordinary episode of positive selection, which we infer to have occurred between 1700 and 8400 years ago, corroborates the role of immune-related genes as prominent targets of adaptive archaic introgression. Our study demonstrates how combining recent advances in genome sequencing, genotyping algorithms, and population genetic methods can reveal signatures of key evolutionary events that remained hidden within poorly resolved regions of the genome.
5

Cross-species regulatory landscapes and elements revealed by novel joint systematic integration of human and mouse blood cell epigenomes

Guanjue Xiang et al.Apr 4, 2023
Knowledge of locations and activities of cis-regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult across species. In contrast, we conducted a cross-species study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable across species. This study used integrative modeling of eight epigenetic features jointly in human and mouse in our Validated Systematic Integration (VISION) Project. The contribution of each epigenetic state in cCREs to gene regulation was estimated from a multivariate regression against gene expression across cell types. We used these values to estimate epigenetic state Regulatory Potential (esRP) scores for each cCRE in each cell type, which are useful for visualizing and categorizing dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbored distinctive transcription factor binding motifs that were similar across species. Genetic variants associated with blood cell phenotypes were highly and specifically enriched in the catalog of human VISION cCREs, supporting its utility for understanding impacts of noncoding genetic variants on blood cell-related traits. A cross-species comparison of cCREs, based on the joint modeling, revealed both conserved and lineage-specific patterns of epigenetic evolution, even in the absence of genomic sequence alignment. We provide these resources through tools and browsers at http://usevision.org.
0

Interspecies regulatory landscapes and elements revealed by novel joint systematic integration of human and mouse blood cell epigenomes

Guanjue Xiang et al.Jul 1, 2024
Knowledge of locations and activities of cis -regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our Validated Systematic Integration (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state Regulatory Potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbored distinctive transcription factor binding motifs that were similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we showed that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.
0

Sources of gene expression variation in a globally diverse cohort

Dylan Taylor et al.Jan 1, 2023
Genetic variation influencing gene expression and splicing is a key source of phenotypic diversity. Though invaluable, studies investigating these links in humans have been strongly biased toward participants of European ancestries, diminishing generalizability and hindering evolutionary research. To address these limitations, we developed MAGE, an open-access RNA-seq data set of lymphoblastoid cell lines from 731 individuals from the 1000 Genomes Project spread across 5 continental groups and 26 populations. Most variation in gene expression (92%) and splicing (95%) was distributed within versus between populations, mirroring variation in DNA sequence. We mapped associations between genetic variants and expression and splicing of nearby genes (cis-eQTLs and cis-sQTLs, respective), identifying >15,000 putatively causal eQTLs and >16,000 putatively causal sQTLs that are enriched for relevant epigenomic signatures. These include 1310 eQTLs and 1657 sQTLs that are largely private to previously underrepresented populations. Our data further indicate that the magnitude and direction of causal eQTL effects are highly consistent across populations and that apparent "population-specific" effects observed in previous studies were largely driven by low resolution or additional independent eQTLs of the same genes that were not detected. Together, our study expands understanding of gene expression diversity across human populations and provides an inclusive resource for studying the evolution and function of human genomes.