ZL
Zhen-Qi Liu
Author with expertise in Analysis of Brain Functional Connectivity Networks
Montreal Neurological Institute and Hospital, McGill University, Shanghai Sixth People's Hospital
+ 11 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(82% Open Access)
Cited by:
44
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
195

neuromaps: structural and functional interpretation of brain maps

Ross Markello et al.Oct 11, 2023
+10
Z
J
R
Imaging technologies are increasingly used to generate high-resolution reference maps of brain structure and function. Modern scientific discovery relies on making comparisons between new maps (e.g. task activations, group structural differences) and these reference maps. Although recent data sharing initiatives have increased the accessibility of such brain maps, data are often shared in disparate coordinate systems (or “spaces”), precluding systematic and accurate comparisons among them. Here we introduce the neuromaps toolbox, an open-access software package for accessing, transforming, and analyzing structural and functional brain annotations. We implement two registration frameworks to generate high-quality transformations between four standard coordinate systems commonly used in neuroimaging research. The initial release of the toolbox features >40 curated reference maps and biological ontologies of the human brain, including maps of gene expression, neurotransmitter receptors, metabolism, neurophysiological oscillations, developmental and evolutionary expansion, functional hierarchy, individual functional variability, and cognitive specialization. Robust quantitative assessment of map-to-map similarity is enabled via a suite of spatial autocorrelation-preserving null models. By combining open-access data with transparent functionality for standardizing and comparing brain maps, the neuromaps software package provides a systematic workflow for comprehensive structural and functional annotation enrichment analysis of the human brain.
80

Time-resolved structure-function coupling in brain networks

Zhen-Qi Liu et al.Oct 24, 2023
+3
R
B
Z
The relationship between structural and functional connectivity in the brain is a key question in systems neuroscience. Modern accounts assume a single global structure-function relationship that persists over time. Here we show that structure-function coupling is dynamic and regionally heterogeneous. We use a temporal unwrapping procedure to identify moment-to-moment co-fluctuations in neural activity, and reconstruct time-resolved structure-function coupling patterns. We find that patterns of dynamic structure-function coupling are highly organized across the cortex. These patterns reflect cortical hierarchies, with stable coupling in unimodal and transmodal cortex, and dynamic coupling in intermediate regions, particularly in insular cortex (salience network) and frontal eye fields (dorsal attention network). Finally, we show that the variability of structure-function coupling is shaped by the distribution of connection lengths. The time-varying coupling of structural and functional connectivity points towards an informative feature of the brain that may reflect how cognitive functions are flexibly deployed and implemented.
0

Systematic evaluation of fMRI data-processing pipelines for consistent functional connectomics

Andrea Luppi et al.Sep 6, 2024
+8
Z
H
A
Abstract Functional interactions between brain regions can be viewed as a network, enabling neuroscientists to investigate brain function through network science. Here, we systematically evaluate 768 data-processing pipelines for network reconstruction from resting-state functional MRI, evaluating the effect of brain parcellation, connectivity definition, and global signal regression. Our criteria seek pipelines that minimise motion confounds and spurious test-retest discrepancies of network topology, while being sensitive to both inter-subject differences and experimental effects of interest. We reveal vast and systematic variability across pipelines’ suitability for functional connectomics. Inappropriate choice of data-processing pipeline can produce results that are not only misleading, but systematically so, with the majority of pipelines failing at least one criterion. However, a set of optimal pipelines consistently satisfy all criteria across different datasets, spanning minutes, weeks, and months. We provide a full breakdown of each pipeline’s performance across criteria and datasets, to inform future best practices in functional connectomics.
0
Citation2
0
Save
3

Spatially heterogeneous structure-function coupling in haemodynamic and electromagnetic brain networks

Zhen-Qi Liu et al.Oct 24, 2023
B
S
G
Z
The relationship between structural and functional connectivity in the brain is a key question in connectomics. Here we quantify patterns of structure-function coupling across the neocortex, by comparing structural connectivity estimated using diffusion MRI with functional connectivity estimated using both neurophysiological (MEG-based) and haemodynamic (fMRI-based) recordings. We find that structure-function coupling is heterogeneous across brain regions and frequency bands. The link between structural and functional connectivity is generally stronger in multiple MEG frequency bands compared to resting state fMRI. Structure-function coupling is greater in slower and intermediate frequency bands compared to faster frequency bands. We also find that structure-function coupling systematically follows the archetypal sensorimotor-association hierarchy, as well as patterns of laminar differentiation, peaking in granular layer IV. Finally, structure-function coupling is better explained using structure-informed inter-regional communication metrics than using structural connectivity alone. Collectively, these results place neurophysiological and haemodynamic structure-function relationships in a common frame of reference and provide a starting point for a multi-modal understanding of structure-function coupling in the brain.
0

Decoding Early Psychoses: Unraveling Stable Microstructural Features Associated with Psychopathology Across Independent Cohorts

Han Wang et al.May 28, 2024
+12
H
Z
H
Background: Early Psychosis patients (EP, within 3 years after psychosis onset) show significant variability, making outcome predictions challenging. Currently, little evidence exists for stable relationships between neural microstructural properties and symptom profiles across EP diagnoses, limiting the development of early interventions. Methods: A data-driven approach, Partial Least Squares (PLS) correlation, was used across two independent datasets to examine multivariate relationships between white matter (WM) properties and symptomatology, to identify stable and generalizable signatures in EP. The primary cohort included EP patients from the Human Connectome Project-Early Psychosis (n=124). The replication cohort included EP patients from the Feinstein Institute for Medical Research (n=78). Both samples included individuals with schizophrenia, schizoaffective disorder, and psychotic mood disorders. Results: In both cohorts, a significant latent component (LC) corresponded to a symptom profile combining negative symptoms, primarily diminished expression, with specific somatic symptoms. Both LCs captured comprehensive features of WM disruption, primarily a combination of subcortical and frontal association fibers. Strikingly, the PLS model trained on the primary cohort accurately predicted microstructural features and symptoms in the replication cohort. Findings were not driven by diagnosis, medication, or substance use. Conclusions: This data-driven transdiagnostic approach revealed a stable and replicable neurobiological signature of microstructural WM alterations in EP, across diagnoses and datasets, showing a strong covariance of these alterations with a unique profile of negative and somatic symptoms. This finding suggests the clinical utility of applying data-driven approaches to reveal symptom domains that share neurobiological underpinnings.
1

Converging on consistent functional connectomics

Andrea Luppi et al.Oct 24, 2023
+8
Z
H
A
Abstract Functional interactions between brain regions can be viewed as a network, empowering neuroscientists to leverage network science to investigate distributed brain function. However, obtaining a brain network from functional neuroimaging data involves multiple steps of data manipulation, which can drastically affect the organisation and validity of the estimated brain network and its properties. Here, we provide a systematic evaluation of 576 unique data-processing pipelines for functional connectomics from resting-state functional MRI, obtained from all possible recombinations of popular choices for brain atlas type and size, connectivity definition and selection, and global signal regression. We use the portrait divergence, an information-theoretic measure of differences in network topology across scales, to quantify the influence of analytic choices on the overall organisation of the derived functional connectome. We evaluate each pipeline across an entire battery of criteria, seeking pipelines that (i) minimise spurious test-retest discrepancies of network topology, while simultaneously (ii) mitigating motion confounds, and being sensitive to both (iii) inter-subject differences and (iv) experimental effects of interest, as demonstrated by propofol-induced general anaesthesia. Our findings reveal vast and systematic variability across pipelines’ suitability for functional connectomics. Choice of the wrong data-processing pipeline can lead to results that are not only misleading, but systematically so, distorting the functional connectome more drastically than the passage of several months. We also found that the majority of pipelines failed to meet at least one of our criteria. However, we identified 8 candidates satisfying all criteria across each of four independent datasets spanning minutes, weeks, and months, ensuring the generalisability of our recommendations. Our results also generalise to alternative acquisition parameters and preprocessing and denoising choices. By providing the community with a full breakdown of each pipeline’s performance across this multi-dataset, multi-criteria, multi-scale and multi-step approach, we establish a comprehensive set of benchmarks to inform future best practices in functional connectomics.
0

Glutamate as a co-agonist for acid-sensing ion channels to aggravate ischemic brain damage

Ke Lai et al.May 27, 2024
+10
Z
I
K
Glutamate is traditionally viewed as the first messenger to activate N-methyl-D-aspartate receptors (NMDARs) and downstream cell death pathways in stroke 1,2 , but unsuccessful clinical trials with NMDAR antagonists implicate the engagement of other NMDAR-independent mechanisms 3–7 . Here we show that glutamate and its structural analogs, including NMDAR antagonist L-AP5 (or APV), robustly potentiated currents mediated by acid-sensing ion channels (ASICs) which are known for driving acidosis-induced neurotoxicity in stroke 4 . Glutamate increased the proton affinity and open probability of ASICs, aggravating ischemic neurotoxicity in both in vitro and in vivo models. Site-directed mutagenesis and structure-based in silico molecular docking and simulations uncovered a novel glutamate binding cavity in the extracellular domain of ASIC1a. Computational drug screening of NMDAR competitive antagonist analogs identified a small molecule, LK-2, that binds to this cavity and abolishes glutamate-dependent potentiation of ASIC currents but spares NMDARs, providing strong neuroprotection efficacy comparable to that in ASIC1a or other cation ion channel knockout mouse models 4–7 . We conclude that glutamate serves as the first messenger for ASICs to exacerbate neurotoxicity, and that selective blockage of glutamate binding sites on ASICs without affecting NMDARs may be of strategic importance for developing effective stroke therapeutics devoid of the psychotic side effects of NMDAR antagonists.
21

Benchmarking functional connectivity by the structure and geometry of the human brain

Zhen-Qi Liu et al.Oct 24, 2023
B
R
Z
The brain’s structural connectivity supports the propagation of electrical impulses, manifesting as patterns of co-activation, termed functional connectivity. Functional connectivity emerges from the underlying sparse structural connections, particularly through poly-synaptic communication. As a result, functional connections between brain regions without direct structural links are numerous, but their organization is not completely understood. Here we investigate the organization of functional connections without direct structural links. We develop a simple, data-driven method to benchmark functional connections with respect to their underlying structural and geometric embedding. We then use this method to re-weigh and re-express functional connectivity. We find evidence of unexpectedly strong functional connectivity within the canonical intrinsic networks of the brain. We also find unexpectedly strong functional connectivity at the apex of the unimodal-transmodal hierarchy. Our results suggest that both phenomena – functional modules and functional hierarchies – emerge from functional interactions that transcend the underlying structure and geometry. These findings also potentially explain recent reports that structural and functional connectivity gradually diverge in transmodal cortex. Collectively, we show how structural connectivity and geometry can be used as a natural frame of reference with which to study functional connectivity patterns in the brain.
0

Decoding Early Psychoses: Unraveling Stable Microstructural Features Associated with Psychopathology Across Independent Cohorts

Carrie Bearden et al.Sep 14, 2024
+6
C
Z
C
Early Psychosis patients (EP, within 3 years after psychosis onset) show significant variability, making outcome predictions challenging. Currently, little evidence exists for stable relationships between neural microstructural properties and symptom profiles across EP diagnoses, limiting the development of early interventions.
0

Signal propagation via cortical hierarchies

Bertha Vázquez-Rodríguez et al.May 7, 2020
B
P
Z
B
The wiring of the brain is organized around a putative unimodal-transmodal hierarchy. Here we investigate how this intrinsic hierarchical organization of the brain shapes the transmission of information among regions. The hierarchical positioning of individual regions was quantified by applying diffusion map embedding to resting state functional MRI networks. Structural networks were reconstructed from diffusion spectrum imaging and topological shortest paths among all brain regions were computed. Sequences of nodes encountered along a path were labelled by their hierarchical position, tracing out path motifs. We find that the cortical hierarchy guides communication in the network. Specifically, nodes are more likely to forward signals to nodes closer in the hierarchy and cover a range of unimodal and transmodal regions, potentially enriching or diversifying signals en route. We also find evidence of systematic detours, particularly in attention networks, where communication is re-routed. Altogether, the present work highlights how the cortical hierarchy shapes signal exchange and imparts behaviourally-relevant communication patterns in brain networks.
Load More