HS
Haochang Shou
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
58
h-index:
5
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
169

Suboptimal phenotypic reliability impedes reproducible human neuroscience

Aki Nikolaidis et al.Jul 23, 2022
Summary Paragraph Biomarkers of behavior and psychiatric illness for cognitive and clinical neuroscience remain out of reach 1–4 . Suboptimal reliability of biological measurements, such as functional magnetic resonance imaging (fMRI), is increasingly cited as a primary culprit for discouragingly large sample size requirements and poor reproducibility of brain-based biomarker discovery 1,5–7 . In response, steps are being taken towards optimizing MRI reliability and increasing sample sizes 8–11 , though this will not be enough. Optimizing biological measurement reliability and increasing sample sizes are necessary but insufficient steps for biomarker discovery; this focus has overlooked the ‘other side of the equation’ - the reliability of clinical and cognitive assessments - which are often suboptimal or unassessed. Through a combination of simulation analysis and empirical studies using neuroimaging data, we demonstrate that the joint reliability of both biological and clinical/cognitive phenotypic measurements must be optimized in order to ensure biomarkers are reproducible and accurate. Even with best-case scenario high reliability neuroimaging measurements and large sample sizes, we show that suboptimal reliability of phenotypic data (i.e., clinical diagnosis, behavioral and cognitive measurements) will continue to impede meaningful biomarker discovery for the field. Improving reliability through development of novel assessments of phenotypic variation is needed, but it is not the sole solution. We emphasize the potential to improve the reliability of established phenotypic methods through aggregation across multiple raters and/or measurements 12–15 , which is becoming increasingly feasible with recent innovations in data acquisition (e.g., web- and smart-phone-based administration, ecological momentary assessment, burst sampling, wearable devices, multimodal recordings) 16–20 . We demonstrate that such aggregation can achieve better biomarker discovery for a fraction of the cost engendered by large-scale samples. Although the current study has been motivated by ongoing developments in neuroimaging, the prioritization of reliable phenotyping will revolutionize neurobiological and clinical endeavors that are focused on brain and behavior.
169
Citation47
0
Save
11

Genetic, Clinical Underpinnings of Brain Change Along Two Neuroanatomical Dimensions of Clinically-defined Alzheimer’s Disease

Junhao Wen et al.Sep 19, 2022
Abstract Alzheimer’s disease (AD) is associated with heterogeneous atrophy patterns. We employed a semi-supervised clustering technique known as Surreal-GAN, through which we identified two dominant dimensions of brain atrophy in symptomatic mild cognitive impairment (MCI) and AD patients: the “diffuse-AD” (R1) dimension shows widespread brain atrophy, and the “MTL-AD” (R2) dimension displays focal medial temporal lobe (MTL) atrophy. Critically, only R2 was associated with widely known sporadic AD genetic risk factors (e.g., APOE ε4 ) in MCI and AD patients at baseline. We then independently detected the presence of the two dimensions in the early stages by deploying the trained model in the general population and two cognitively unimpaired cohorts of asymptomatic participants. In the general population, genome-wide association studies found 77 genes unrelated to APOE differentially associated with R1 and R2. Functional analyses revealed that these genes were overrepresented in differentially expressed gene sets in organs beyond the brain (R1 and R2), including the heart (R1) and the pituitary gland, muscle, and kidney (R2). These genes were enriched in biological pathways implicated in dendritic cells (R2), macrophage functions (R1), and cancer (R1 and R2). Several of them were “druggable genes” for cancer (R1), inflammation (R1), cardiovascular diseases (R1), and diseases of the nervous system (R2). The longitudinal progression showed that APOE ε4 , amyloid, and tau were associated with R2 at early asymptomatic stages, but this longitudinal association occurs only at late symptomatic stages in R1. Our findings deepen our understanding of the multifaceted pathogenesis of AD beyond the brain. In early asymptomatic stages, the two dimensions are associated with diverse pathological mechanisms, including cardiovascular diseases, inflammation, and hormonal dysfunction – driven by genes different from APOE – which may collectively contribute to the early pathogenesis of AD.
11
Citation11
0
Save
11

The Genetic Architecture of Multimodal Human Brain Age

Junhao Wen et al.Jan 1, 2023
The complex biological mechanisms underlying human brain aging remain incompletely understood, involving multiple body organs and chronic diseases. In this study, we used multimodal magnetic resonance imaging and artificial intelligence to examine the genetic architecture of the brain age gap (BAG) derived from gray matter volume (GM-BAG, N=31,557 European ancestry), white matter microstructure (WM-BAG, N=31,674), and functional connectivity (FC-BAG, N=32,017). We identified sixteen genomic loci that reached genome-wide significance (P-value<5x10-8). A gene-drug-disease network highlighted genes linked to GM-BAG for treating neurodegenerative and neuropsychiatric disorders and WM-BAG genes for cancer therapy. GM-BAG showed the highest heritability enrichment for genetic variants in conserved regions, whereas WM-BAG exhibited the highest heritability enrichment in the 59 untranslated regions; oligodendrocytes and astrocytes, but not neurons, showed significant heritability enrichment in WM and FC-BAG, respectively. Mendelian randomization identified potential causal effects of several exposure variables on brain aging, such as type 2 diabetes on GM-BAG (odds ratio=1.05 [1.01, 1.09], P-value=1.96x10-2) and AD on WM-BAG (odds ratio=1.04 [1.02, 1.05], P-value=7.18x10-5). Overall, our results provide valuable insights into the genetics of human brain aging, with clinical implications for potential lifestyle and therapeutic interventions. All results are publicly available at the MEDICINE knowledge portal: https://labs.loni.usc.edu/medicine.
0

Residual Partial Least Squares Learning: Brain Cortical Thickness Simultaneously Predicts Eight Non-pairwise-correlated Behavioural and Disease Outcomes in Alzheimer's Disease

Oliver Chén et al.Mar 13, 2024
Alzheimer's Disease (AD) is the leading cause of dementia. It results in cortical thickness changes and is associated with a decline in cognition and behaviour. Such decline affects multiple important day-to-day functions, including memory, language, orientation, judgment and problem-solving. Recent research has made important progress in identifying brain regions associated with single outcomes, such as individual AD status and general cognitive decline. The complex projection from multiple brain areas to multiple AD outcomes, however, remains poorly understood. This makes the assessment and especially the prediction of multiple AD outcomes - each of which may unveil an integral yet different aspect of the disease - challenging, particularly when some are not strongly correlated. Here, uniting residual learning, partial least squares (PLS), and predictive modelling, we develop an explainable, generalisable, and reproducible method called the Residual Partial Least Squares Learning (the re-PLS Learning) to (1) chart the pathways between large-scale multivariate brain cortical thickness data (inputs) and multivariate disease and behaviour data (outcomes); (2) simultaneously predict multiple, non-pairwise-correlated outcomes; (3) control for confounding variables (e.g., age and gender) affecting both inputs and outcomes and the pathways in-between; (4) perform longitudinal AD disease status classification and disease severity prediction. We evaluate the performance of the proposed method against a variety of alternatives on data from AD patients, subjects with mild cognitive impairment (MCI), and cognitively normal individuals (n=1,196) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Our results unveil pockets of brain areas in the temporal, frontal, sensorimotor, and cingulate areas whose cortical thickness may be respectively associated with declines in different cognitive and behavioural subdomains in AD. Finally, we characterise re-PLS' geometric interpretation and mathematical support for delivering meaningful neurobiological insights and provide an open software package (re-PLS) available at https://github.com/thanhvd18/rePLS.
1

DeepComBat: A Statistically Motivated, Hyperparameter-Robust, Deep Learning Approach to Harmonization of Neuroimaging Data

Fengling Hu et al.Apr 24, 2023
Neuroimaging data from multiple batches (i.e. acquisition sites, scanner manufacturer, datasets, etc.) are increasingly necessary to gain new insights into the human brain. However, multi-batch data, as well as extracted radiomic features, exhibit pronounced technical artifacts across batches. These batch effects introduce confounding into the data and can obscure biological effects of interest, decreasing the generalizability and reproducibility of findings. This is especially true when multi-batch data is used alongside complex downstream analysis models, such as machine learning methods. Image harmonization methods seeking to remove these batch effects are important for mitigating these issues; however, significant multivariate batch effects remain in the data following harmonization by current state-of-the-art statistical and deep learning methods. We present DeepCombat, a deep learning harmonization method based on a conditional variational autoencoder architecture and the ComBat harmonization model. DeepCombat learns and removes subject-level batch effects by accounting for the multivariate relationships between features. Additionally, DeepComBat relaxes a number of strong assumptions commonly made by previous deep learning harmonization methods and is empirically robust across a wide range of hyperparameter choices. We apply this method to neuroimaging data from a large cognitive-aging cohort and find that DeepCombat outperforms existing methods, as assessed by a battery of machine learning methods, in removing scanner effects from cortical thickness measurements while preserving biological heterogeneity. Additionally, DeepComBat provides a new perspective for statistically-motivated deep learning harmonization methods.