AS
Ana Silva
Author with expertise in Genomic Analysis of Ancient DNA
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
44
h-index:
16
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
370

Population Genomics of Postglacial Western Eurasia

Morten Allentoft et al.May 5, 2022
Summary Western Eurasia witnessed several large-scale human migrations during the Holocene 1–5 . To investigate the cross-continental impacts we shotgun-sequenced 317 primarily Mesolithic and Neolithic genomes from across Northern and Western Eurasia. These were imputed alongside published data to obtain diploid genotypes from >1,600 ancient humans. Our analyses revealed a ‘Great Divide’ genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers (HGs) were highly genetically differentiated east and west of this zone, and the impact of the neolithisation was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacements of HGs in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, while east of the Urals relatedness remained high until ∼4,000 BP, consistent with persistence of localised HG groups. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive but we demonstrate that HGs from the Middle Don region contributed ancestry to them. Yamnaya-groups later admixed with individuals associated with the Globular Amphora Culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a ‘Neolithic steppe’ cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations.
370
Citation28
0
Save
0

Stable population structure in Europe since the Iron Age, despite high mobility

Margaret Antonio et al.May 16, 2022
Abstract Ancient DNA research in the past decade has revealed that European population structure changed dramatically in the prehistoric period (14,000-3,000 years before present, YBP), reflecting the widespread introduction of Neolithic farmer and Bronze Age Steppe ancestries. However, little is known about how population structure changed from the historical period onward (3,000 YBP - present). To address this, we collected whole genomes from 204 individuals from Europe and the Mediterranean, many of which are the first historical period genomes from their region (e.g. Armenia and France). We found that most regions show remarkable inter-individual heterogeneity. At least 7% of historical individuals carry ancestry uncommon in the region where they were sampled, some indicating cross-Mediterranean contacts. Despite this high level of mobility, overall population structure across western Eurasia is relatively stable through the historical period up to the present, mirroring geography. We show that, under standard population genetics models with local panmixia, the observed level of dispersal would lead to a collapse of population structure. Persistent population structure thus suggests a lower effective migration rate than indicated by the observed dispersal. We hypothesize that this phenomenon can be explained by extensive transient dispersal arising from drastically improved transportation networks and the Roman Empire’s mobilization of people for trade, labor, and military. This work highlights the utility of ancient DNA in elucidating finer scale human population dynamics in recent history.
0
Citation8
0
Save
136

An integrative skeletal and paleogenomic analysis of prehistoric stature variation suggests relatively reduced health for early European farmers

Stephanie Marciniak et al.Mar 31, 2021
Abstract Human culture, biology, and health were shaped dramatically by the onset of agriculture ~12,000 years before present (BP). Subsistence shifts from hunting and gathering to agriculture are hypothesized to have resulted in increased individual fitness and population growth as evidenced by archaeological and population genomic data alongside a simultaneous decline in physiological health as inferred from paleopathological analyses and stature reconstructions of skeletal remains. A key component of the health decline inference is that relatively shorter statures observed for early farmers may (at least partly) reflect higher childhood disease burdens and poorer nutrition. However, while such stresses can indeed result in growth stunting, height is also highly heritable, and substantial inter-individual variation in the height genetic component within a population is typical. Moreover, extensive migration and gene flow were characteristics of multiple agricultural transitions worldwide. Here, we consider both osteological and ancient DNA data from the same prehistoric individuals to comprehensively study the trajectory of human stature variation as a proxy for health across a transition to agriculture. Specifically, we compared ‘predicted’ genetic contributions to height from paleogenomic data and ‘achieved’ adult osteological height estimated from long bone measurements on a per-individual basis for n=160 ancient Europeans from sites spanning the Upper Paleolithic to the Iron Age (~38,000-2,400 BP). We found that individuals from the Neolithic were shorter than expected (given their individual polygenic height scores) by an average of −4.47 cm relative to individuals from the Upper Paleolithic and Mesolithic (P=0.016). The average osteological vs. expected stature then increased relative to the Neolithic over the Copper (+2.67 cm, P=0.052), Bronze (+3.33 cm, P=0.032), and Iron Ages (+3.95 cm, P=0.094). These results were partly attenuated when we accounted for genome-wide genetic ancestry variation in our sample (which we note is partly duplicative with the individual polygenic score information). For example, in this secondary analysis Neolithic individuals were −3.48 cm shorter than expected on average relative to individuals from the Upper Paleolithic and Mesolithic (P=0.056). We also incorporated observations of paleopathological indicators of non-specific stress that can persist from childhood to adulthood in skeletal remains (linear enamel hypoplasia, cribra orbitalia, and porotic hyperostosis) into our model. Overall, our work highlights the potential of integrating disparate datasets to explore proxies of health in prehistory.
136
Citation8
0
Save
0

Optimised in-solution enrichment of over a million ancient human SNPs

Roberta Davidson et al.May 16, 2024
Abstract In-solution hybridisation enrichment of genetic markers is a method of choice in paleogenomic studies, where the DNA of interest is generally heavily fragmented and contaminated with environmental DNA, and where the retrieval of genetic data comparable between individuals is challenging. Here, we benchmarked the commercial “Twist Ancient DNA” reagent from Twist Biosciences using sequencing libraries from ancestrally diverse ancient human samples with low to high endogenous DNA content (0.1–44%). For each library, we tested one and two rounds of enrichment, and assessed performance compared to deep shotgun sequencing. We find that the “Twist Ancient DNA” assay provides robust enrichment of ∼1.2M target SNPs without introducing allelic bias that may interfere with downstream population genetics analyses. Additionally, we show that pooling up to 4 sequencing libraries and performing two rounds of enrichment is both reliable and cost-effective for libraries with less than 27% endogenous DNA content. Above 38% endogenous content, a maximum of one round of enrichment is recommended for cost-effectiveness and to preserve library complexity. In conclusion, we provide researchers in the field of human paleogenomics with a comprehensive understanding of the strengths and limitations of different sequencing and enrichment strategies, and our results offer practical guidance for optimising experimental protocols.