DK
David Kleinfeld
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
2
h-index:
4
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
112

Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission

Abhi Aggarwal et al.Feb 15, 2022
Abstract The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit saturating activation kinetics and are excluded from post-synaptic densities, limiting their ability to distinguish synaptic from extrasynaptic glutamate. Using a multi-assay screen in bacteria, soluble protein, and cultured neurons, we generated novel variants with improved kinetics and signal-to-noise ratios. We also developed surface display constructs that improve iGluSnFR’s nanoscopic localization to post-synapses. The resulting indicator, iGluSnFR3, exhibits rapid non-saturating activation kinetics and reports synaptic glutamate release with improved linearity and increased specificity versus extrasynaptic signals in cultured neurons. In mouse visual cortex, imaging of iGluSnFR3 at individual boutons reported single electrophysiologically-observed action potentials with high specificity versus non-synaptic transients. In vibrissal sensory cortex Layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines.
5

Guide to the construction and use of an adaptive optics two-photon microscope with direct wavefront sensing

Pan-tong Yao et al.Jan 24, 2023
Two-photon microscopy, combined with appropriate optical labeling, has enabled the study of structure and function throughout nervous systems. This methodology enables, for example, the measurement and tracking of sub-micrometer structures within brain cells, the spatio-temporal mapping of spikes in individual neurons, and the spatio-temporal mapping of transmitter release in individual synapses. Yet the spatial resolution of two-photon microscopy rapidly degrades as imaging is attempted at depths more than a few scattering lengths into tissue, i.e., below the superficial layers that constitute the top 300 to 400 µm of neocortex. To obviate this limitation, we measure the wavefront at the focus of the excitation beam and utilize adaptive optics that alters the incident wavefront to achieve an improved focal volume. We describe the constructions, calibration, and operation of a two-photon microscopy that incorporates adaptive optics to restore diffraction-limited resolution throughout the nearly 900 µm depth of mouse cortex. Our realization utilizes a guide star formed by excitation of red-shifted dye within the blood serum to directly measure the wavefront. We incorporate predominantly commercial optical, optomechanical, mechanical, and electronic components; computer aided design models of the exceptional custom components are supplied. The design is modular and allows for expanded imaging and optical excitation capabilities. We demonstrate our methodology in mouse neocortex by imaging the morphology of somatostatin-expressing neurons at 700 µm beneath the pia, calcium dynamics of layer 5b projection neurons, and glutamate transmission to L4 neurons.
3

A lone spike in blood glucose can enhance the thrombo-inflammatory response in cortical vessels

Iftach Shaked et al.Aug 13, 2022
ABSTRACT How transient hyperglycemia contributes to cerebro-vascular disease has been a challenge to study under controlled conditions. We present an approach to model luminal vessel thrombo-inflammation using amplified, ultrashort laser-pulses to physically disrupt brain-venule endothelium. Vessel disruption in conjunction with transient hyperglycemia from a single injection of metabolically active D -glucose results in real-time responses to venule damage that include rapid serum extravasation, platelet aggregation, and neutrophil recruitment, in normal mice. In contrast, vessel thrombo-inflammation following laser-induced vessel disruption is significantly reduced in mice injected with metabolically inert L-glucose. Thrombo-inflammation is pharmacologically ameliorated by a platelet inhibitor, by a scavenger of reactive oxygen species, or by a nitric oxide donor. For comparison, in diabetic mice injured vessel thrombo-inflammatory responses are also reduced by restoration of normo-glycemia. Our approach provides a controlled method to probe synergies of transient metabolic and physical vascular perturbations and reveals new aspects of brain pathophysiology.
0

Vagal sensory neurons mediate the Bezold–Jarisch reflex and induce syncope

Jonathan Lovelace et al.Nov 1, 2023
Visceral sensory pathways mediate homeostatic reflexes, the dysfunction of which leads to many neurological disorders1. The Bezold–Jarisch reflex (BJR), first described2,3 in 1867, is a cardioinhibitory reflex that is speculated to be mediated by vagal sensory neurons (VSNs) that also triggers syncope. However, the molecular identity, anatomical organization, physiological characteristics and behavioural influence of cardiac VSNs remain mostly unknown. Here we leveraged single-cell RNA-sequencing data and HYBRiD tissue clearing4 to show that VSNs that express neuropeptide Y receptor Y2 (NPY2R) predominately connect the heart ventricular wall to the area postrema. Optogenetic activation of NPY2R VSNs elicits the classic triad of BJR responses—hypotension, bradycardia and suppressed respiration—and causes an animal to faint. Photostimulation during high-resolution echocardiography and laser Doppler flowmetry with behavioural observation revealed a range of phenotypes reflected in clinical syncope, including reduced cardiac output, cerebral hypoperfusion, pupil dilation and eye-roll. Large-scale Neuropixels brain recordings and machine-learning-based modelling showed that this manipulation causes the suppression of activity across a large distributed neuronal population that is not explained by changes in spontaneous behavioural movements. Additionally, bidirectional manipulation of the periventricular zone had a push–pull effect, with inhibition leading to longer syncope periods and activation inducing arousal. Finally, ablating NPY2R VSNs specifically abolished the BJR. Combined, these results demonstrate a genetically defined cardiac reflex that recapitulates characteristics of human syncope at physiological, behavioural and neural network levels.