SQ
Sofia Quinodoz
Author with expertise in Regulation of RNA Processing and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(91% Open Access)
Cited by:
1,299
h-index:
16
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Higher-Order Inter-chromosomal Hubs Shape 3D Genome Organization in the Nucleus

Sofia Quinodoz et al.Jun 7, 2018
+17
B
N
S
Eukaryotic genomes are packaged into a 3-dimensional structure in the nucleus. Current methods for studying genome-wide structure are based on proximity ligation. However, this approach can fail to detect known structures, such as interactions with nuclear bodies, because these DNA regions can be too far apart to directly ligate. Accordingly, our overall understanding of genome organization remains incomplete. Here, we develop split-pool recognition of interactions by tag extension (SPRITE), a method that enables genome-wide detection of higher-order interactions within the nucleus. Using SPRITE, we recapitulate known structures identified by proximity ligation and identify additional interactions occurring across larger distances, including two hubs of inter-chromosomal interactions that are arranged around the nucleolus and nuclear speckles. We show that a substantial fraction of the genome exhibits preferential organization relative to these nuclear bodies. Our results generate a global model whereby nuclear bodies act as inter-chromosomal hubs that shape the overall packaging of DNA in the nucleus.
0
Citation739
0
Save
0

SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses

Abhik Banerjee et al.Oct 8, 2020
+19
E
M
A
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses.
0
Citation510
0
Save
155

Viscoelastic RNA entanglement and advective flow underlie nucleolar form and function

Joshua Riback et al.Jan 2, 2022
+4
D
J
J
Abstract The nucleolus facilitates transcription, processing, and assembly of ribosomal RNA (rRNA), the most abundant RNA in cells. Nucleolar function is facilitated by its multiphase liquid properties, but nucleolar fluidity and its connection to ribosome biogenesis remain unclear. Here, we used quantitative imaging, mathematical modeling, and pulse-chase nucleotide labelling to map nucleolar rRNA dynamics. Inconsistent with a purely diffusive process, rRNA steadily expands away from the transcriptional sites, moving in a slow (~1Å/s), radially-directed fashion. This motion reflects the viscoelastic properties of a highly concentrated gel of entangled rRNA, whose constant polymerization drives steady outward flow. We propose a new viscoelastic rRNA release model, where nucleolar rRNA cleavage and processing reduce entanglement, fluidizing the nucleolar periphery to facilitate release of mature pre-ribosomal particles.
155
Citation21
0
Save
420

A single-cell method to map higher-order 3D genome organization in thousands of individual cells reveals structural heterogeneity in mouse ES cells

Mary Arrastia et al.Aug 12, 2020
+6
N
J
M
ABSTRACT In eukaryotes, the nucleus is organized into a three dimensional structure consisting of both local interactions such as those between enhancers and promoters, and long-range higher-order structures such as nuclear bodies. This organization is central to many aspects of nuclear function, including DNA replication, transcription, and cell cycle progression. Nuclear structure intrinsically occurs within single cells; however, measuring such a broad spectrum of 3D DNA interactions on a genome-wide scale and at the single cell level has been a great challenge. To address this, we developed single-cell split-pool recognition of interactions by tag extension (scSPRITE), a new method that enables measurements of genome-wide maps of 3D DNA structure in thousands of individual nuclei. scSPRITE maximizes the number of DNA contacts detected per cell enabling high-resolution genome structure maps within each cells and is easy-to-use and cost-effective. scSPRITE accurately detects chromosome territories, active and inactive compartments, topologically associating domains (TADs), and higher-order structures within single cells. In addition, scSPRITE measures cell-to-cell heterogeneity in genome structure at different levels of resolution and shows that TADs are dynamic units of genome organization that can vary between different cells within a population. scSPRITE will improve our understanding of nuclear architecture and its relationship to nuclear function within an individual nucleus from complex cell types and tissues containing a diverse population of cells.
420
Citation13
0
Save
0

Higher-order inter-chromosomal hubs shape 3-dimensional genome organization in the nucleus

Sofia Quinodoz et al.Nov 18, 2017
+15
B
N
S
ABSTRACT Eukaryotic genomes are packaged into a 3-dimensional structure in the nucleus of each cell. There are currently two distinct views of genome organization that are derived from different technologies. The first view, derived from genome-wide proximity ligation methods (e.g. Hi-C), suggests that genome organization is largely organized around chromosomes. The second view, derived from in situ imaging, suggests a central role for nuclear bodies. Yet, because microscopy and proximity-ligation methods measure different aspects of genome organization, these two views remain poorly reconciled and our overall understanding of how genomic DNA is organized within the nucleus remains incomplete. Here, we develop Split-Pool Recognition of Interactions by Tag Extension (SPRITE), which moves away from proximity-ligation and enables genome-wide detection of higher-order DNA interactions within the nucleus. Using SPRITE, we recapitulate known genome structures identified by Hi-C and show that the contact frequencies measured by SPRITE strongly correlate with the 3-dimensional distances measured by microscopy. In addition to known structures, SPRITE identifies two major hubs of inter-chromosomal interactions that are spatially arranged around the nucleolus and nuclear speckles, respectively. We find that the majority of genomic regions exhibit preferential spatial association relative to one of these nuclear bodies, with regions that are highly transcribed by RNA Polymerase II organizing around nuclear speckles and transcriptionally inactive and centromere-proximal regions organizing around the nucleolus. Together, our results reconcile the two distinct pictures of nuclear structure and demonstrate that nuclear bodies act as inter-chromosomal hubs that shape the overall 3-dimensional packaging of genomic DNA in the nucleus.
0
Citation12
0
Save
1

Integrative Genome Modeling Platform reveals essentiality of rare contact events in 3D genome organizations

Lorenzo Boninsegna et al.Aug 23, 2021
+5
G
A
L
Abstract A multitude of sequencing-based and microscopy technologies provide the means to unravel the relationship between the three-dimensional (3D) organization of genomes and key regulatory processes of genome function. However, it remains a major challenge to systematically integrate all available data sources to characterize the nuclear organization of genomes across different spatial scales. Here, we develop a multi-modal data integration approach to produce genome structures that are highly predictive for nuclear locations of genes and nuclear bodies, local chromatin compaction, and spatial segregation of functionally related chromatin. By performing a quantitative assessment of the predictive power of genome structures generated from different data combinations, we demonstrate that multimodal data integration can compensate for systematic errors and missing values in some of the data and thus, greatly increases accuracy and coverage of genome structure models. We also show that alternative combinations of different orthogonal data sources can converge to models with similar predictive power. Moreover, our study reveals the key contributions of low-frequency inter-chromosomal contacts (e.g., “rare” contact events) to accurately predicting the global nuclear architecture, including the positioning of genes and chromosomes. Overall, our results highlight the benefits of multi-modal data integration for genome structure analysis, available through the Integrative Genome structure Modeling (IGM) software package that we introduce here.
1
Citation3
0
Save
0

The genomic and cellular basis of biosynthetic innovation in rove beetles

Sheila Kitchen et al.Jun 1, 2024
+15
A
T
S
How evolution at the cellular level potentiates macroevolutionary change is central to understanding biological diversification. The >66,000 rove beetle species (Staphylinidae) form the largest metazoan family. Combining genomic and cell type transcriptomic insights spanning the largest clade, Aleocharinae, we retrace evolution of two cell types comprising a defensive gland—a putative catalyst behind staphylinid megadiversity. We identify molecular evolutionary steps leading to benzoquinone production by one cell type via a mechanism convergent with plant toxin release systems, and synthesis by the second cell type of a solvent that weaponizes the total secretion. This cooperative system has been conserved since the Early Cretaceous as Aleocharinae radiated into tens of thousands of lineages. Reprogramming each cell type yielded biochemical novelties enabling ecological specialization—most dramatically in symbionts that infiltrate social insect colonies via host-manipulating secretions. Our findings uncover cell type evolutionary processes underlying the origin and evolvability of a beetle chemical innovation.
0
Citation1
0
Save
319

RNA promotes the formation of spatial compartments in the nucleus

Sofia Quinodoz et al.Aug 25, 2020
+8
N
P
S
SUMMARY The nucleus is a highly organized arrangement of RNA, DNA, and protein molecules that are compartmentalized within three-dimensional (3D) structures involved in shared functional and regulatory processes. Although RNA has long been proposed to play a global role in organizing nuclear structure, exploring the role of RNA in shaping nuclear structure has remained a challenge because no existing methods can simultaneously measure RNA-RNA, RNA-DNA, and DNA-DNA contacts within 3D structures. To address this, we developed RNA & DNA SPRITE (RD-SPRITE) to comprehensively map the location of all RNAs relative to DNA and other RNAs. Using this approach, we identify many RNAs that are localized near their transcriptional loci (RNA-DNA) together with other diffusible ncRNAs (RNA-RNA) within higher-order DNA structures (DNA-DNA). These RNA-chromatin compartments span three major classes of nuclear functions: RNA processing (including ribosome biogenesis, mRNA splicing, snRNA biogenesis, and histone mRNA processing), heterochromatin assembly, and gene regulation. More generally, we identify hundreds of ncRNAs that form stable nuclear compartments in spatial proximity to their transcriptional loci. We find that dozens of nuclear compartments require RNA to guide protein regulators into these 3D structures, and focusing on several ncRNAs, we show that these ncRNAs specifically regulate heterochromatin assembly and the expression of genes contained within these compartments. Together, our results demonstrate a unique mechanism by which RNA acts to shape nuclear structure by forming high concentration territories immediately upon transcription, binding to diffusible regulators, and guiding them into spatial compartments to regulate a wide range of essential nuclear functions.
139

3D genome organization around nuclear speckles drives mRNA splicing efficiency

Prashant Bhat et al.Jan 4, 2023
+6
B
A
P
The nucleus is highly organized such that factors involved in transcription and processing of distinct classes of RNA are organized within specific nuclear bodies. One such nuclear body is the nuclear speckle, which is defined by high concentrations of protein and non-coding RNA regulators of pre-mRNA splicing. What functional role, if any, speckles might play in the process of mRNA splicing remains unknown. Here we show that genes localized near nuclear speckles display higher spliceosome concentrations, increased spliceosome binding to their pre-mRNAs, and higher co-transcriptional splicing levels relative to genes that are located farther from nuclear speckles. We show that directed recruitment of a pre-mRNA to nuclear speckles is sufficient to drive increased mRNA splicing levels. Finally, we show that gene organization around nuclear speckles is highly dynamic with differential localization between cell types corresponding to differences in Pol II occupancy. Together, our results integrate the longstanding observations of nuclear speckles with the biochemistry of mRNA splicing and demonstrate a critical role for dynamic 3D spatial organization of genomic DNA in driving spliceosome concentrations and controlling the efficiency of mRNA splicing
1

The genomic and cellular basis of biosynthetic innovation in rove beetles

Sheila Kitchen et al.May 30, 2023
+14
A
T
S
Abstract How evolution at the cellular level potentiates change at the macroevolutionary level is a major question in evolutionary biology. With >66,000 described species, rove beetles (Staphylinidae) comprise the largest metazoan family. Their exceptional radiation has been coupled to pervasive biosynthetic innovation whereby numerous lineages bear defensive glands with diverse chemistries. Here, we combine comparative genomic and single-cell transcriptomic data from across the largest rove beetle clade, Aleocharinae. We retrace the functional evolution of two novel secretory cell types that together comprise the tergal gland—a putative catalyst behind Aleocharinae’s megadiversity. We identify key genomic contingencies that were critical to the assembly of each cell type and their organ-level partnership in manufacturing the beetle’s defensive secretion. This process hinged on evolving a mechanism for regulated production of noxious benzoquinones that appears convergent with plant toxin release systems, and synthesis of an effective benzoquinone solvent that weaponized the total secretion. We show that this cooperative biosynthetic system arose at the Jurassic-Cretaceous boundary, and that following its establishment, both cell types underwent ∼150 million years of stasis, their chemistry and core molecular architecture maintained almost clade-wide as Aleocharinae radiated globally into tens of thousands of lineages. Despite this deep conservation, we show that the two cell types have acted as substrates for the emergence of adaptive, biochemical novelties—most dramatically in symbiotic lineages that have infiltrated social insect colonies and produce host behavior-manipulating secretions. Our findings uncover genomic and cell type evolutionary processes underlying the origin, functional conservation and evolvability of a chemical innovation in beetles.
Load More