YT
Yodai Takei
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(83% Open Access)
Cited by:
3,087
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+

Chee-Huat Eng et al.Mar 25, 2019
Imaging the transcriptome in situ with high accuracy has been a major challenge in single-cell biology, which is particularly hindered by the limits of optical resolution and the density of transcripts in single cells1–5. Here we demonstrate an evolution of sequential fluorescence in situ hybridization (seqFISH+). We show that seqFISH+ can image mRNAs for 10,000 genes in single cells—with high accuracy and sub-diffraction-limit resolution—in the cortex, subventricular zone and olfactory bulb of mouse brain, using a standard confocal microscope. The transcriptome-level profiling of seqFISH+ allows unbiased identification of cell classes and their spatial organization in tissues. In addition, seqFISH+ reveals subcellular mRNA localization patterns in cells and ligand–receptor pairs across neighbouring cells. This technology demonstrates the ability to generate spatial cell atlases and to perform discovery-driven studies of biological processes in situ. seqFISH+, an evolution of sequential fluorescence in situ hybridization with super-resolution imaging capabilities, is used to image mRNAs of 10,000 genes in cultured cells and mouse brain slices, demonstrating the ability to generate spatial atlases and to perform discovery-driven studies in situ.
0
Citation1,232
0
Save
0

The adult human testis transcriptional cell atlas

Jingtao Guo et al.Oct 12, 2018
Human adult spermatogenesis balances spermatogonial stem cell (SSC) self-renewal and differentiation, alongside complex germ cell-niche interactions, to ensure long-term fertility and faithful genome propagation. Here, we performed single-cell RNA sequencing of ~6500 testicular cells from young adults. We found five niche/somatic cell types (Leydig, myoid, Sertoli, endothelial, macrophage), and observed germline-niche interactions and key human-mouse differences. Spermatogenesis, including meiosis, was reconstructed computationally, revealing sequential coding, non-coding, and repeat-element transcriptional signatures. Interestingly, we identified five discrete transcriptional/developmental spermatogonial states, including a novel early SSC state, termed State 0. Epigenetic features and nascent transcription analyses suggested developmental plasticity within spermatogonial States. To understand the origin of State 0, we profiled testicular cells from infants, and identified distinct similarities between adult State 0 and infant SSCs. Overall, our datasets describe key transcriptional and epigenetic signatures of the normal adult human testis, and provide new insights into germ cell developmental transitions and plasticity.
0
Citation521
0
Save
0

Integrated spatial genomics reveals global architecture of single nuclei

Yodai Takei et al.Jan 27, 2021
Identifying the relationships between chromosome structures, nuclear bodies, chromatin states and gene expression is an overarching goal of nuclear-organization studies1-4. Because individual cells appear to be highly variable at all these levels5, it is essential to map different modalities in the same cells. Here we report the imaging of 3,660 chromosomal loci in single mouse embryonic stem (ES) cells using DNA seqFISH+, along with 17 chromatin marks and subnuclear structures by sequential immunofluorescence and the expression profile of 70 RNAs. Many loci were invariably associated with immunofluorescence marks in single mouse ES cells. These loci form 'fixed points' in the nuclear organizations of single cells and often appear on the surfaces of nuclear bodies and zones defined by combinatorial chromatin marks. Furthermore, highly expressed genes appear to be pre-positioned to active nuclear zones, independent of bursting dynamics in single cells. Our analysis also uncovered several distinct mouse ES cell subpopulations with characteristic combinatorial chromatin states. Using clonal analysis, we show that the global levels of some chromatin marks, such as H3 trimethylation at lysine 27 (H3K27me3) and macroH2A1 (mH2A1), are heritable over at least 3-4 generations, whereas other marks fluctuate on a faster time scale. This seqFISH+-based spatial multimodal approach can be used to explore nuclear organization and cell states in diverse biological systems.
0
Citation307
0
Save
4

Reconstructing cell histories in space with image-readable base editor recording

Duncan Chadly et al.Jan 4, 2024
Knowing the ancestral states and lineage relationships of individual cells could unravel the dynamic programs underlying development. Engineering cells to actively record information within their own genomic DNA could reveal these histories, but existing recording systems have limited information capacity or disrupt spatial context. Here, we introduce baseMEMOIR, which combines base editing, sequential hybridization imaging, and Bayesian inference to allow reconstruction of high-resolution cell lineage trees and cell state dynamics while preserving spatial organization. BaseMEMOIR stochastically and irreversibly edits engineered dinucleotides to one of three alternative image-readable states. By genomically integrating arrays of editable dinucleotides, we constructed an embryonic stem cell line with 792 bits of recordable, image-readable memory, a 50-fold increase over the state of the art. Simulations showed that this memory size was sufficient for accurate reconstruction of deep lineage trees. Experimentally, baseMEMOIR allowed precise reconstruction of lineage trees 6 or more generations deep in embryonic stem cell colonies. Further, it also allowed inference of ancestral cell states and their quantitative cell state transition rates, all from endpoint images. baseMEMOIR thus provides a scalable framework for reconstructing single cell histories in spatially organized multicellular systems.
4
Citation1
0
Save
1

High-resolution spatial multi-omics reveals cell-type specific nuclear compartments

Yodai Takei et al.May 9, 2023
The mammalian nucleus is compartmentalized by diverse subnuclear structures. These subnuclear structures, marked by nuclear bodies and histone modifications, are often cell-type specific and affect gene regulation and 3D genome organization1-3. Understanding nuclear organization requires identifying the molecular constituents of subnuclear structures and mapping their associations with specific genomic loci in individual cells, within complex tissues. Here, we introduce two-layer DNA seqFISH+, which allows simultaneous mapping of 100,049 genomic loci, together with nascent transcriptome for 17,856 genes and a diverse set of immunofluorescently labeled subnuclear structures all in single cells in cell lines and adult mouse cerebellum. Using these multi-omics datasets, we showed that repressive chromatin compartments are more variable by cell type than active compartments. We also discovered a single exception to this rule: an RNA polymerase II (RNAPII)-enriched compartment was associated with long, cell-type specific genes (> 200kb), in a manner distinct from nuclear speckles. Further, our analysis revealed that cell-type specific facultative and constitutive heterochromatin compartments marked by H3K27me3 and H4K20me3 are enriched at specific genes and gene clusters, respectively, and shape radial chromosomal positioning and inter-chromosomal interactions in neurons and glial cells. Together, our results provide a single-cell high-resolution multi-omics view of subnuclear compartments, associated genomic loci, and their impacts on gene regulation, directly within complex tissues.
139

3D genome organization around nuclear speckles drives mRNA splicing efficiency

Prashant Bhat et al.Jan 4, 2023
The nucleus is highly organized such that factors involved in transcription and processing of distinct classes of RNA are organized within specific nuclear bodies. One such nuclear body is the nuclear speckle, which is defined by high concentrations of protein and non-coding RNA regulators of pre-mRNA splicing. What functional role, if any, speckles might play in the process of mRNA splicing remains unknown. Here we show that genes localized near nuclear speckles display higher spliceosome concentrations, increased spliceosome binding to their pre-mRNAs, and higher co-transcriptional splicing levels relative to genes that are located farther from nuclear speckles. We show that directed recruitment of a pre-mRNA to nuclear speckles is sufficient to drive increased mRNA splicing levels. Finally, we show that gene organization around nuclear speckles is highly dynamic with differential localization between cell types corresponding to differences in Pol II occupancy. Together, our results integrate the longstanding observations of nuclear speckles with the biochemistry of mRNA splicing and demonstrate a critical role for dynamic 3D spatial organization of genomic DNA in driving spliceosome concentrations and controlling the efficiency of mRNA splicing
Load More