RL
Ryan Lorig-Roach
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(67% Open Access)
Cited by:
1,202
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Human-Specific NOTCH2NL Genes Affect Notch Signaling and Cortical Neurogenesis

Ian Fiddes et al.May 1, 2018
+26
M
G
I

Summary

 Genetic changes causing brain size expansion in human evolution have remained elusive. Notch signaling is essential for radial glia stem cell proliferation and is a determinant of neuronal number in the mammalian cortex. We find that three paralogs of human-specific NOTCH2NL are highly expressed in radial glia. Functional analysis reveals that different alleles of NOTCH2NL have varying potencies to enhance Notch signaling by interacting directly with NOTCH receptors. Consistent with a role in Notch signaling, NOTCH2NL ectopic expression delays differentiation of neuronal progenitors, while deletion accelerates differentiation into cortical neurons. Furthermore, NOTCH2NL genes provide the breakpoints in 1q21.1 distal deletion/duplication syndrome, where duplications are associated with macrocephaly and autism and deletions with microcephaly and schizophrenia. Thus, the emergence of human-specific NOTCH2NL genes may have contributed to the rapid evolution of the larger human neocortex, accompanied by loss of genomic stability at the 1q21.1 locus and resulting recurrent neurodevelopmental disorders.
0
Citation442
0
Save
0

Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes

Kishwar Shafin et al.May 4, 2020
+29
S
T
K
Abstract De novo assembly of a human genome using nanopore long-read sequences has been reported, but it used more than 150,000 CPU hours and weeks of wall-clock time. To enable rapid human genome assembly, we present Shasta, a de novo long-read assembler, and polishing algorithms named MarginPolish and HELEN. Using a single PromethION nanopore sequencer and our toolkit, we assembled 11 highly contiguous human genomes de novo in 9 d. We achieved roughly 63× coverage, 42-kb read N50 values and 6.5× coverage in reads >100 kb using three flow cells per sample. Shasta produced a complete haploid human genome assembly in under 6 h on a single commercial compute node. MarginPolish and HELEN polished haploid assemblies to more than 99.9% identity (Phred quality score QV = 30) with nanopore reads alone. Addition of proximity-ligation sequencing enabled near chromosome-level scaffolds for all 11 genomes. We compare our assembly performance to existing methods for diploid, haploid and trio-binned human samples and report superior accuracy and speed.
0
Citation440
0
Save
1

Complete genomic and epigenetic maps of human centromeres

Nicolas Altemose et al.Mar 31, 2022
+56
A
G
N
Existing human genome assemblies have almost entirely excluded repetitive sequences within and near centromeres, limiting our understanding of their organization, evolution, and functions, which include facilitating proper chromosome segregation. Now, a complete, telomere-to-telomere human genome assembly (T2T-CHM13) has enabled us to comprehensively characterize pericentromeric and centromeric repeats, which constitute 6.2% of the genome (189.9 megabases). Detailed maps of these regions revealed multimegabase structural rearrangements, including in active centromeric repeat arrays. Analysis of centromere-associated sequences uncovered a strong relationship between the position of the centromere and the evolution of the surrounding DNA through layered repeat expansions. Furthermore, comparisons of chromosome X centromeres across a diverse panel of individuals illuminated high degrees of structural, epigenetic, and sequence variation in these complex and rapidly evolving regions.
1
Citation303
0
Save
166

Complete genomic and epigenetic maps of human centromeres

Nicolas Altemose et al.Jul 13, 2021
+56
A
G
N
Abstract Existing human genome assemblies have almost entirely excluded highly repetitive sequences within and near centromeres, limiting our understanding of their sequence, evolution, and essential role in chromosome segregation. Here, we present an extensive study of newly assembled peri/centromeric sequences representing 6.2% (189.9 Mb) of the first complete, telomere-to-telomere human genome assembly (T2T-CHM13). We discovered novel patterns of peri/centromeric repeat organization, variation, and evolution at both large and small length scales. We also found that inner kinetochore proteins tend to overlap the most recently duplicated subregions within centromeres. Finally, we compared chromosome X centromeres across a diverse panel of individuals and uncovered structural, epigenetic, and sequence variation at single-base resolution across these regions. In total, this work provides an unprecedented atlas of human centromeres to guide future studies of their complex and critical functions as well as their unique evolutionary dynamics. One-sentence summary Deep characterization of fully assembled human centromeres reveals their architecture and fine-scale organization, variation, and evolution.
166
Citation9
0
Save
56

Phased nanopore assembly with Shasta and modular graph phasing with GFAse

Ryan Lorig-Roach et al.Feb 22, 2023
+20
J
M
R
As a step towards simplifying and reducing the cost of haplotype resolved de novo assembly, we describe new methods for accurately phasing nanopore data with the Shasta genome assembler and a modular tool for extending phasing to the chromosome scale called GFAse. We test using new variants of Oxford Nanopore Technologies' (ONT) PromethION sequencing, including those using proximity ligation and show that newer, higher accuracy ONT reads substantially improve assembly quality.
56
Citation6
0
Save
0

A common flanking variant is associated with enhanced stability of the FGF14-SCA27B repeat locus

David Pellerin et al.Jun 27, 2024
+126
M
G
D
0
Citation2
0
Save
202

Scalable Nanopore sequencing of human genomes provides a comprehensive view of haplotype-resolved variation and methylation

Mikhail Kolmogorov et al.Jan 15, 2023
+27
M
K
M
Long-read sequencing technologies substantially overcome the limitations of short-reads but to date have not been considered as feasible replacement at scale due to a combination of being too expensive, not scalable enough, or too error-prone. Here, we develop an efficient and scalable wet lab and computational protocol for Oxford Nanopore Technologies (ONT) long-read sequencing that seeks to provide a genuine alternative to short-reads for large-scale genomics projects. We applied our protocol to cell lines and brain tissue samples as part of a pilot project for the NIH Center for Alzheimer’s and Related Dementias (CARD). Using a single PromethION flow cell, we can detect SNPs with F1-score better than Illumina short-read sequencing. Small indel calling remains difficult within homopolymers and tandem repeats, but is comparable to Illumina calls elsewhere. Further, we can discover structural variants with F1-score comparable to state-of-the-art methods involving Pacific Biosciences HiFi sequencing and trio information (but at a lower cost and greater throughput). Using ONT-based phasing, we can then combine and phase small and structural variants at megabase scales. Our protocol also produces highly accurate, haplotype-specific methylation calls. Overall, this makes large-scale long-read sequencing projects feasible; the protocol is currently being used to sequence thousands of brain-based genomes as a part of the NIH CARD initiative. We provide the protocol and software as open-source integrated pipelines for generating phased variant calls and assemblies.
0

Efficient de novo assembly of eleven human genomes using PromethION sequencing and a novel nanopore toolkit

Kishwar Shafin et al.Jul 26, 2019
+27
R
T
K
Present workflows for producing human genome assemblies from long-read technologies have cost and production time bottlenecks that prohibit efficient scaling to large cohorts. We demonstrate an optimized PromethION nanopore sequencing method for eleven human genomes. The sequencing, performed on one machine in nine days, achieved an average 63x coverage, 42 Kb read N50, 90% median read identity and 6.5x coverage in 100 Kb+ reads using just three flow cells per sample. To assemble these data we introduce new computational tools: Shasta - a de novo long read assembler, and MarginPolish & HELEN - a suite of nanopore assembly polishing algorithms. On a single commercial compute node Shasta can produce a complete human genome assembly in under six hours, and MarginPolish & HELEN can polish the result in just over a day, achieving 99.9% identity (QV30) for haploid samples from nanopore reads alone. We evaluate assembly performance for diploid, haploid and trio-binned human samples in terms of accuracy, cost, and time and demonstrate improvements relative to current state-of-the-art methods in all areas. We further show that addition of proximity ligation (Hi-C) sequencing yields near chromosome-level scaffolds for all eleven genomes.
0

Human-specific NOTCH-like genes in a region linked to neurodevelopmental disorders affect cortical neurogenesis

Ian Fiddes et al.Nov 17, 2017
+25
M
G
I
Genetic changes causing dramatic brain size expansion in human evolution have remained elusive. Notch signaling is essential for radial glia stem cell proliferation and a determinant of neuronal number in the mammalian cortex. We find three paralogs of human-specific NOTCH2NL are highly expressed in radial glia cells. Functional analysis reveals different alleles of NOTCH2NL have varying potencies to enhance Notch signaling by interacting directly with NOTCH receptors. Consistent with a role in Notch signaling, NOTCH2NL ectopic expression delays differentiation of neuronal progenitors, while deletion accelerates differentiation. NOTCH2NL genes provide the breakpoints in typical cases of 1q21.1 distal deletion/duplication syndrome, where duplications are associated with macrocephaly and autism, and deletions with microcephaly and schizophrenia. Thus, the emergence of hominin-specific NOTCH2NL genes may have contributed to the rapid evolution of the larger hominin neocortex accompanied by loss of genomic stability at the 1q21.1 locus and a resulting recurrent neurodevelopmental disorder.