CW
Clifford Woolf
Author with expertise in Mechanisms and Management of Neuropathic Pain
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
91
(78% Open Access)
Cited by:
33,318
h-index:
142
/
i10-index:
379
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Spared nerve injury: an animal model of persistent peripheral neuropathic pain

Isabelle Décosterd et al.Aug 1, 2000
Peripheral neuropathic pain is produced by multiple etiological factors that initiate a number of diverse mechanisms operating at different sites and at different times and expressed both within, and across different disease states. Unraveling the mechanisms involved requires laboratory animal models that replicate as far as possible, the different pathophysiological changes present in patients. It is unlikely that a single animal model will include the full range of neuropathic pain mechanisms. A feature of several animal models of peripheral neuropathic pain is partial denervation. In the most frequently used models a mixture of intact and injured fibers is created by loose ligation of either the whole (Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988;33:87–107) or a tight ligation of a part (Seltzer Z, Dubner R, Shir Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 1990;43:205–218) of a large peripheral nerve, or a tight ligation of an entire spinal segmental nerve (Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992;50:355–363). We have developed a variant of partial denervation, the spared nerve injury model. This involves a lesion of two of the three terminal branches of the sciatic nerve (tibial and common peroneal nerves) leaving the remaining sural nerve intact. The spared nerve injury model differs from the Chung spinal segmental nerve, the Bennett chronic constriction injury and the Seltzer partial sciatic nerve injury models in that the co-mingling of distal intact axons with degenerating axons is restricted, and it permits behavioral testing of the non-injured skin territories adjacent to the denervated areas. The spared nerve injury model results in early (<24 h), prolonged (>6 months), robust (all animals are responders) behavioral modifications. The mechanical (von Frey and pinprick) sensitivity and thermal (hot and cold) responsiveness is increased in the ipsilateral sural and to a lesser extent saphenous territories, without any change in heat thermal thresholds. Crush injury of the tibial and common peroneal nerves produce similar early changes, which return, however to baseline at 7–9 weeks. The spared nerve injury model may provide, therefore, an additional resource for unraveling the mechanisms responsible for the production of neuropathic pain.
0

The induction and maintenance of central sensitization is dependent on N -methyl-d-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states

Clifford Woolf et al.Mar 1, 1991
Repetitive stimulation of small diameter primary afferent fibres produces a progressive increase in action potential discharge (windup) and a prolonged increase in the excitability of neurones in the spinal cord following the stimulus. Previous studies have demonstrated that windup is the consequence of the temporal summation of slow synaptic potentials and that the slow potentials and windup are reduced by pretreatment with N-methyl-d-aspartic acid (NMDA) antagonists. We have now examined whether primary afferent induced hypersensitivity states in flexor motoneurones are also dependent on the activation of NMDA receptors and whether windup is a possible trigger for the production of the central hypersensitivity. Both a non-competitive (MK-801) and a competitive (D-CPP) NMDA antagonist, at doses that did not modify the baseline reflex, reduced the facilitation of the flexor reflex produced by either brief electrical stimulation of the sural nerve (1 Hz for 20 sec at C-fibre strength), or by the cutaneous application of the chemical irritant mustard oil. These antagonists also prevented windup from occurring in the motoneurones. When the the MK-801 and the D-CPP were administered once a state of central facilitation had been induced by prior treatment with mustard oil, they returned the facilitated reflex to its pretreatment level. These results indicate that NMDA receptors are involved in the induction and maintenance of the central sensitization produced by high threshold primary afferent inputs. Because central sensitization is likely to contribute to the post-injury pain hypersenstivity states in man, these data have a bearing both on the potential role of NMDA antagonists for pre-emptive analgesia and for treating established pain states.
0

A three-dimensional human neural cell culture model of Alzheimer’s disease

Se Choi et al.Oct 10, 2014
Early-onset familial Alzheimer’s disease mutations induce both amyloid-β and tau pathologies in differentiated human neural stem cells in 3D cultures. Although it is accepted that both aggregates of amyloid-β and neurofibrillary tangles of hyper-phosphorylated tau protein contribute to Alzheimer's disease pathology, no single model has incorporated both of these pathological events using human cells. Here, Rudolph Tanzi and colleagues find that familial Alzheimer's disease mutations in the amyloid-β precursor protein (APP) and presenilin 1 (PSEN1) genes are able to induce robust extracellular deposition of amyloid-β, including β-amyloid plaques, in a human neural stem-cell-derived three-dimensional culture system. This provides experimental validation of the amyloid hypothesis that proposes that the amyloid-β accumulation drives tauopathy in Alzheimer's disease. The cell culture system used here can be used as a platform for studying the pathogenic mechanisms of Alzheimer's disease and for drug screening. Alzheimer’s disease is the most common form of dementia, characterized by two pathological hallmarks: amyloid-β plaques and neurofibrillary tangles1. The amyloid hypothesis of Alzheimer’s disease posits that the excessive accumulation of amyloid-β peptide leads to neurofibrillary tangles composed of aggregated hyperphosphorylated tau2,3. However, to date, no single disease model has serially linked these two pathological events using human neuronal cells. Mouse models with familial Alzheimer’s disease (FAD) mutations exhibit amyloid-β-induced synaptic and memory deficits but they do not fully recapitulate other key pathological events of Alzheimer’s disease, including distinct neurofibrillary tangle pathology4,5. Human neurons derived from Alzheimer’s disease patients have shown elevated levels of toxic amyloid-β species and phosphorylated tau but did not demonstrate amyloid-β plaques or neurofibrillary tangles6,7,8,9,10,11. Here we report that FAD mutations in β-amyloid precursor protein and presenilin 1 are able to induce robust extracellular deposition of amyloid-β, including amyloid-β plaques, in a human neural stem-cell-derived three-dimensional (3D) culture system. More importantly, the 3D-differentiated neuronal cells expressing FAD mutations exhibited high levels of detergent-resistant, silver-positive aggregates of phosphorylated tau in the soma and neurites, as well as filamentous tau, as detected by immunoelectron microscopy. Inhibition of amyloid-β generation with β- or γ-secretase inhibitors not only decreased amyloid-β pathology, but also attenuated tauopathy. We also found that glycogen synthase kinase 3 (GSK3) regulated amyloid-β-mediated tau phosphorylation. We have successfully recapitulated amyloid-β and tau pathology in a single 3D human neural cell culture system. Our unique strategy for recapitulating Alzheimer’s disease pathology in a 3D neural cell culture model should also serve to facilitate the development of more precise human neural cell models of other neurodegenerative disorders.
0

Partial Peripheral Nerve Injury Promotes a Selective Loss of GABAergic Inhibition in the Superficial Dorsal Horn of the Spinal Cord

Kimberly Moore et al.Aug 1, 2002
To clarify whether inhibitory transmission in the superficial dorsal horn of the spinal cord is reduced after peripheral nerve injury, we have studied synaptic transmission in lamina II neurons of an isolated adult rat spinal cord slice preparation after complete sciatic nerve transection (SNT), chronic constriction injury (CCI), or spared nerve injury (SNI). Fast excitatory transmission remains intact after all three types of nerve injury. In contrast, primary afferent-evoked IPSCs are substantially reduced in incidence, magnitude, and duration after the two partial nerve injuries, CCI and SNI, but not SNT. Pharmacologically isolated GABAAreceptor-mediated IPSCs are decreased in the two partial nerve injury models compared with naive animals. An analysis of unitary IPSCs suggests that presynaptic GABA release is reduced after CCI and SNI. Partial nerve injury also decreases dorsal horn levels of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD) 65 kDa ipsilateral to the injury and induces neuronal apoptosis, detected by terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling staining in identified neurons. Both of these mechanisms could reduce presynaptic GABA levels and promote a functional loss of GABAergic transmission in the superficial dorsal horn.
0

p38 Mitogen-Activated Protein Kinase Is Activated after a Spinal Nerve Ligation in Spinal Cord Microglia and Dorsal Root Ganglion Neurons and Contributes to the Generation of Neuropathic Pain

Shan‐Xue Jin et al.May 15, 2003
The possible involvement of p38 mitogen-activated protein kinase activation in spinal cord and dorsal root ganglion (DRG) cells in the development of peripheral neuropathic pain has been explored. Ligation of the L5 spinal nerve (SNL) on one side in adult rats produces an early onset and long-lasting mechanical allodynia. This lesion results in activation of p38 in the L5 segment of the spinal cord, most prominently in the ipsilateral dorsal horn, starting soon after the lesion (<1 d) and persisting for >3 weeks. The activated p38 in the spinal cord is restricted entirely to microglia; phospho-p38 colocalizes only with the microglial marker OX-42 and not with either the neuronal marker neuronal-specific nuclear protein or the astrocyte marker GFAP. In contrast, SNL induces a delayed (>3 d) activation of p38 in the L5 DRG that occurs predominantly in neurons. Continuous injection of the p38 inhibitor 4-(4-fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyridyl)-1H-imidazole (SB203580) via the intrathecal route, starting before the SNL surgery, reduces SNL-induced mechanical allodynia from day 1 to day 10, with maximal effects at early time points. Post-treatment with SB203580 starting on day 1 or on day 10 after surgery also reduces established mechanical allodynia. Because the reduction in neuropathic pain by p38 inhibition occurs before the appearance of p38 activation in DRG neurons, p38 activation in spinal cord microglia is likely to have a substantial role in the earliest phase of neuropathic pain. Coactivation of p38 in DRG neurons and spinal microglia may contribute to later phases of neuropathic pain.
0
Citation821
0
Save
Load More