PB
Pushpinder Bawa
Author with expertise in Neonatal Lung Development and Respiratory Morbidity
Boston Medical Center, Boston University, Michigan Center for Translational Pathology
+ 4 more
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
4
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
23

Directed differentiation of mouse pluripotent stem cells into functional lung-specific mesenchyme

Andrea Alber et al.Oct 24, 2023
+9
L
H
A
Abstract The successful generation of endodermal, ectodermal, and most mesodermal lineages from pluripotent stem cells has resulted in basic discoveries and regenerative medicine clinical trials of cell-based therapies. In contrast, the derivation of tissue-specific mesenchyme via directed differentiation in vitro has markedly lagged, due in part to a limited understanding of the signaling pathways regulating in vivo mesenchymal development and a lack of specific markers or reporters able to purify such lineages. The derivation of lung-specific mesenchyme is a particularly important goal since this tissue plays important roles in lung development and respiratory disease pathogenesis. Here we generate a mouse induced pluripotent stem cell (iPSC) line carrying a lung-specific mesenchymal reporter/lineage tracer facilitating the tracking and purification of engineered lung-specific mesenchyme. We identify the key signaling pathways (RA and Shh) necessary to specify lung mesenchyme from lateral plate mesodermal precursors and find that mouse iPSC-derived lung mesenchyme (iLM) expresses the molecular and functional phenotypes of primary developing lung mesenchyme. Purified iLM can be recombined with separately engineered lung epithelial progenitors, self-organizing into 3-dimensional organoids featuring significantly augmented structural complexity and lineage purity, including interacting juxtaposed layers of epithelium and mesenchyme. Co-culture with iLM increases the yield of lung epithelial progenitors and impacts epithelial and mesenchymal differentiation programs, suggesting functional epithelial-mesenchymal crosstalk. Our iPSC-derived population thus expresses key features of developing lung mesenchyme, providing an inexhaustible source of cells for studying lung development, modeling diseases, and developing therapeutics.
23
Citation3
0
Save
1

Growth Hormone Accelerates Recovery From Acetaminophen-Induced Murine Liver Injury

Elissa Everton et al.Oct 24, 2023
+10
C
M
E
Acetaminophen (APAP) overdose is the leading cause of acute liver failure, with one available treatment, N-acetyl cysteine (NAC). Yet, NAC effectiveness diminishes about ten hours after APAP overdose, urging for therapeutic alternatives. This study addresses this need by deciphering a mechanism of sexual dimorphism in APAP-induced liver injury, and leveraging it to accelerate liver recovery via growth hormone (GH) treatment. GH secretory patterns, pulsatile in males and near-continuous in females, determine the sex bias in many liver metabolic functions. Here, we aim to establish GH as a novel therapy to treat APAP hepatotoxicity.Our results demonstrate sex-dependent APAP toxicity, with females showing reduced liver cell death and faster recovery than males. Single-cell RNA sequencing analyses reveal that female hepatocytes have significantly greater levels of GH receptor expression and GH pathway activation compared to males. In harnessing this female-specific advantage, we demonstrate that a single injection of recombinant human GH protein accelerates liver recovery, promotes survival in males following sub-lethal dose of APAP, and is superior to standard-of-care NAC. Alternatively, slow-release delivery of human GH via the safe nonintegrative lipid nanoparticle-encapsulated nucleoside-modified mRNA (mRNA-LNP), a technology validated by widely used COVID-19 vaccines, rescues males from APAP-induced death that otherwise occurred in control mRNA-LNP-treated mice.Our study demonstrates a sexually dimorphic liver repair advantage in females following APAP overdose, leveraged by establishing GH as an alternative treatment, delivered either as recombinant protein or mRNA-LNP, to potentially prevent liver failure and liver transplant in APAP-overdosed patients.
1
Citation1
0
Save
52

Generation of human alveolar epithelial type I cells from pluripotent stem cells

Claire Burgess et al.Oct 24, 2023
+12
P
J
C
Abstract In the distal lung, alveolar epithelial type I cells (AT1s) comprise the vast majority of alveolar surface area and are uniquely flattened to allow the diffusion of oxygen into the capillaries. This structure along with a quiescent, terminally differentiated phenotype has made AT1s particularly challenging to isolate or maintain in cell culture. As a result, there is a lack of established models for the study of human AT1 biology, and in contrast to alveolar epithelial type II cells (AT2s), little is known about the mechanisms regulating their differentiation. Here we engineer a human in vitro AT1 model system through the directed differentiation of induced pluripotent stem cells (iPSC). We first define the global transcriptomes of primary adult human AT1s, suggesting gene-set benchmarks and pathways, such as Hippo-LATS-YAP/TAZ signaling, that are enriched in these cells. Next, we generate iPSC-derived AT2s (iAT2s) and find that activating nuclear YAP signaling is sufficient to promote a broad transcriptomic shift from AT2 to AT1 gene programs. The resulting cells express a molecular, morphologic, and functional phenotype reminiscent of human AT1 cells, including the capacity to form a flat epithelial barrier which produces characteristic extracellular matrix molecules and secreted ligands. Our results indicate a role for Hippo-LATS-YAP signaling in the differentiation of human AT1s and demonstrate the generation of viable AT1-like cells from iAT2s, providing an in vitro model of human alveolar epithelial differentiation and a potential source of human AT1s that until now have been challenging to viably obtain from patients.
0

Abnormal global longitudinal strain and reduced serum inflammatory markers in cardiac AL amyloidosis patients without significant amyloid fibril deposition

Camille Edwards et al.May 27, 2024
+12
J
G
C
Background Cardiac dysfunction in AL amyloidosis is thought to be partly related to the direct impact of AL LCs on cardiomyocyte function, with the degree of dysfunction at diagnosis as a major determinant of clinical outcomes. Nonetheless, mechanisms underlying LC-induced myocardial toxicity are not well understood. Methods We identified gene expression changes correlating with human cardiac cells exposed to a cardiomyopathy-associated κAL LC. We then sought to confirm these findings in a clinical dataset by focusing on clinical parameters associated with the pathways dysregulated at the gene expression level. Results Upon exposure to a cardiomyopathy-associated κAL LC, cardiac cells exhibited gene expression changes related to myocardial contractile function and inflammation, leading us to hypothesize that there could be clinically detectable changes in GLS on echocardiogram and serum inflammatory markers in patients. Thus, we identified 29 patients with normal IVSd but abnormal cardiac biomarkers suggestive of LC-induced cardiac dysfunction. These patients display early cardiac biomarker staging, abnormal GLS, and significantly reduced serum inflammatory markers compared to patients with clinically evident amyloid fibril deposition. Conclusion Collectively, our findings highlight early molecular and functional signatures of cardiac AL amyloidosis, with potential impact for developing improved patient biomarkers and novel therapeutics.
0

Multivalent proteins rapidly and reversibly phase-separate upon osmotic cell volume change

Ameya Jalihal et al.May 7, 2020
+8
L
S
A
Processing bodies (PBs) and stress granules (SGs) are prominent examples of sub-cellular, membrane-less granules that phase-separate under physiological and stressed conditions, respectively. We observe that the trimeric PB protein DCP1A rapidly (within ~10 s) phase-separates in mammalian cells during hyperosmotic stress and dissolves upon isosmotic rescue (over ~100 s) with minimal impact on cell viability even after multiple cycles of osmotic perturbation. Strikingly, this rapid intracellular hyperosmotic phase separation (HOPS) correlates with the degree of cell volume compression, distinct from SG assembly, and is exhibited broadly by homo-multimeric (valency ≥ 2) proteins across several cell types. Notably, HOPS leads to nuclear sequestration of pre-mRNA cleavage factor component CPSF6, rationalizing hyperosmolarity-induced global impairment of transcription termination. Together, our data suggest that the multimeric proteome rapidly responds to changes in hydration and molecular crowding, revealing an unexpected mode of globally programmed phase separation and sequestration that adapts the cell to volume change.
4

NMDA receptor misalignment in iPSC-derived neurons from a multi-generational family with inherited Creutzfeldt-Jakob disease

Nhat Le et al.Oct 24, 2023
+6
A
R
N
Summary The most common subtype of genetic prion disease is caused by the E200K mutation of the prion protein. We have obtained samples from 22 members of a multi-generational Israeli family harboring this mutation, and generated a library of induced pluripotent stem cells (iPSCs) representing nine carriers and four non-carriers. Whole-exome sequencing was performed on all individuals. A comparison of neurons derived from E200K iPSCs to those from non-carriers revealed the presence of several disease-relevant phenotypes. Neurons from E200K carriers were found to contain thioflavin S-positive accumulations of PrP in their cell bodies. In addition, these neurons displayed disruptions of NMDA receptor/PSD95 co-localization at postsynaptic sites. Our study shows that iPSC-derived neurons, which express physiologically relevant levels of mutant PrP in a human neuronal context, can model certain aspects of human prion disease, offering a powerful platform for investigating pathological mechanisms and testing potential therapeutics.