DR
David Roberts
Author with expertise in Mass Spectrometry Techniques
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(93% Open Access)
Cited by:
18
h-index:
14
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Distinct Core Glycan and O-Glycoform Utilization of SARS-CoV-2 Omicron Variant Spike Protein RBD Revealed by Top-Down Mass Spectrometry

David Roberts et al.Feb 10, 2022
+4
B
M
D
Abstract The SARS-CoV-2 Omicron (B.1.1.529) variant possesses numerous spike (S) mutations particularly in the S receptor-binding domain (S-RBD) that significantly improve transmissibility and evasion of neutralizing antibodies. But exactly how the mutations in the Omicron variant enhance viral escape from immunological protection remains to be understood. The S-RBD remains the principal target for neutralizing antibodies and therapeutics, thus new structural insights into the Omicron S-RBD and characterization of the post-translational glycosylation changes can inform rational design of vaccines and therapeutics. Here we report the molecular variations and O-glycoform changes of the Omicron S-RBD variant as compared to wild-type (WA1/2020) and Delta (B.1.617.2) variants using high-resolution top-down mass spectrometry (MS). A novel O-glycosite (Thr376) unique to the Omicron variant is identified. Moreover, we have directly quantified the Core 1 and Core 2 O-glycan structures and characterized the O-glycoform structural heterogeneity of the three variants. Our findings reveal high resolution detail of Omicron O-glycoforms and their utilization to provide direct molecular evidence of proteoform alterations in the Omicron variant which could shed light on how this variant escapes immunological protection.
1
Citation7
0
Save
5

MASH Native: A Unified Solution for Native Top-Down Proteomics Data Processing

Eli Larson et al.Jan 3, 2023
+17
M
M
E
Native top-down proteomics (nTDP) integrates native mass spectrometry (nMS) with top-down proteomics (TDP) to provide comprehensive analysis of protein complexes together with proteoform identification and characterization. Despite significant advances in nMS and TDP software developments, a unified and user-friendly software package for analysis of nTDP data remains lacking. Herein, we have developed MASH Native to provide a unified solution for nTDP to process complex datasets with database searching capabilities in a user-friendly interface. MASH Native supports various data formats and incorporates multiple options for deconvolution, database searching, and spectral summing to provide a one-stop shop for characterizing both native protein complexes and proteoforms. The MASH Native app, video tutorials, written tutorials and additional documentation are freely available for download at https://labs.wisc.edu/gelab/MASH_Explorer/MASHNativeSoftware.php . All data files shown in user tutorials are included with the MASH Native software in the download .zip file.
25

Structural O-Glycoform Heterogeneity of the SARS-CoV-2 Spike Protein Receptor-Binding Domain Revealed by Native Top-Down Mass Spectrometry

David Roberts et al.Mar 1, 2021
+5
J
M
D
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes an extensively glycosylated surface spike (S) protein to mediate host cell entry and the S protein glycosylation is strongly implicated in altering viral binding/function and infectivity. However, the structures and relative abundance of the new O-glycans found on the S protein regional-binding domain (S-RBD) remain cryptic because of the challenges in intact glycoform analysis. Here, we report the complete structural characterization of intact O-glycan proteoforms using native top-down mass spectrometry (MS). By combining trapped ion mobility spectrometry (TIMS), which can separate the protein conformers of S-RBD and analyze their gas phase structural variants, with ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) MS analysis, the O-glycoforms of the S-RBD are comprehensively characterized, so that seven O-glycoforms and their relative molecular abundance are structurally elucidated for the first time. These findings demonstrate that native top-down MS can provide a high-resolution proteoform-resolved mapping of diverse O-glycoforms of the S glycoprotein, which lays a strong molecular foundation to uncover the functional roles of their O-glycans. This proteoform-resolved approach can be applied to reveal the structural O-glycoform heterogeneity of emergent SARS-CoV-2 S-RBD variants, as well as other O-glycoproteins in general.
25
Paper
Citation3
0
Save
0

A Genome-Wide CRISPR Screen Identifies Sortilin as the Receptor Responsible for Galectin-1 Lysosomal Trafficking

Justin Donnelly et al.Jan 3, 2024
+5
S
R
J
Abstract Galectins are a family of mammalian glycan-binding proteins that have been implicated as regulators of myriad cellular processes including cell migration, apoptosis, and immune modulation. Several members of this family, such as galectin-1, exhibit both cell-surface and intracellular functions. Interestingly, galectin-1 can be found in the endomembrane system, nucleus, or cytosol, as well as on the cell surface. The mechanisms by which galectin-1 traffics between cellular compartments, including its unconventional secretion and internalization processes, are poorly understood. Here, we determined the pathways by which exogenous galectin-1 enters cells and explored its capacity as a delivery vehicle for protein and siRNA therapeutics. We used a galectin-1-toxin conjugate, modelled on antibody-drug conjugates, as a selection tool in a genome-wide CRISPR screen. We discovered that galectin-1 interacts with the endosome-lysosome trafficking receptor sortilin in a glycan-dependent manner, which regulates galectin-1 trafficking to the lysosome. Further, we show that this pathway can be exploited for delivery of a functional siRNA. This study sheds light on the mechanisms by which galectin-1 is internalized by cells and suggests a new strategy for intracellular drug delivery via galectin-1 conjugation.
0
Citation2
0
Save
0

Top-down proteomics

David Roberts et al.Jun 13, 2024
+7
Y
J
D
Proteoforms, which arise from post-translational modifications, genetic polymorphisms and RNA splice variants, play a pivotal role as drivers in biology. Understanding proteoforms is essential to unravel the intricacies of biological systems and bridge the gap between genotypes and phenotypes. By analysing whole proteins without digestion, top-down proteomics (TDP) provides a holistic view of the proteome and can decipher protein function, uncover disease mechanisms and advance precision medicine. This Primer explores TDP, including the underlying principles, recent advances and an outlook on the future. The experimental section discusses instrumentation, sample preparation, intact protein separation, tandem mass spectrometry techniques and data collection. The results section looks at how to decipher raw data, visualize intact protein spectra and unravel data analysis. Additionally, proteoform identification, characterization and quantification are summarized, alongside approaches for statistical analysis. Various applications are described, including the human proteoform project and biomedical, biopharmaceutical and clinical sciences. These are complemented by discussions on measurement reproducibility, limitations and a forward-looking perspective that outlines areas where the field can advance, including potential future applications. Proteoforms can be investigated using top-down proteomics, a technique that analyses whole proteins without previous digestion. This Primer introduces top-down proteomics, exploring mass spectrometry experimental methods, sample preparation, data analysis and applications in understanding human disease.
0
Citation1
0
Save
17

High Sensitivity Top-down Proteomics Captures Single Muscle Cell Heterogeneity in Large Proteoforms

Jake Melby et al.Dec 31, 2022
+13
K
D
J
Abstract Single-cell proteomics has emerged as a powerful method to characterize cellular phenotypic heterogeneity and the cell-specific functional networks underlying biological processes. However, significant challenges remain in single-cell proteomics for the analysis of proteoforms arising from genetic mutations, alternative splicing, and post-translational modifications. Herein, we have developed a highly sensitive functionally integrated top-down proteomics method for the comprehensive analysis of proteoforms from single cells. We applied this method to single muscle fibers (SMFs) to resolve their heterogeneous functional and proteomic properties at the single cell level. Notably, we have detected single-cell heterogeneity in large proteoforms (>200 kDa) from the SMFs. Using SMFs obtained from three functionally distinct muscles, we found fiber-to-fiber heterogeneity among the sarcomeric proteoforms which can be related to the functional heterogeneity. Importantly, we reproducibly detected multiple isoforms of myosin heavy chain (~223 kDa), a motor protein that drives muscle contraction, with high mass accuracy to enable the classification of individual fiber types. This study represents the first “single-cell” top-down proteomics analysis that captures single muscle cell heterogeneity in large proteoforms and establishes a direct relationship between sarcomeric proteoforms and muscle fiber types, highlighting the potential of top-down proteomics for uncovering the molecular underpinnings of cell-to-cell variation in complex systems. Significance Statement Single-cell technologies are revolutionizing biology and molecular medicine by allowing direct investigation of the biological variability among individual cells. Top-down proteomics is uniquely capable of dissecting biological heterogeneity at the intact protein level. Herein, we develop a highly sensitive single-cell top-down proteomics method to reveal diverse molecular variations in large proteins (>200 kDa) among individual single muscle cells. Our results both reveal and characterize the differences in protein post-translational modifications and isoform expression possible between individual muscle cells. We further integrate functional properties with proteomics and accurately measure myosin isoforms for individual muscle fiber type classification. Our study highlights the potential of top-down proteomics for understanding how single-cell protein heterogeneity contributes to cellular functions.
17
Citation1
0
Save
15

Ultrafast and Reproducible Proteomics from Small Amounts of Heart Tissue Enabled by Azo and timsTOF Pro

Timothy Aballo et al.May 26, 2021
+3
J
D
T
Abstract Global bottom-up mass spectrometry (MS)-based proteomics is widely used for protein identification and quantification to achieve a comprehensive understanding of the composition, structure, and function of the proteome. However, traditional sample preparation methods are time-consuming, typically including overnight tryptic digestion, extensive sample clean-up to remove MS-incompatible surfactants, and offline sample fractionation to reduce proteome complexity prior to online liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Thus, there is a need for a fast, robust, and reproducible method for protein identification and quantification from complex proteomes. Herein, we developed an ultrafast bottom-up proteomics method enabled by Azo, a photocleavable, MS-compatible surfactant that effectively solubilizes proteins and promotes rapid tryptic digestion, combined with the Bruker timsTOF Pro, which enables deeper proteome coverage through trapped ion mobility spectrometry (TIMS) and parallel accumulation-serial fragmentation (PASEF) of peptides. We applied this method to analyze the complex human cardiac proteome and identified nearly 4,000 protein groups from as little as 1 mg of human heart tissue in a single one-dimensional LC-TIMS-MS/MS run with high reproducibility. Overall, we anticipate this ultrafast, robust, and reproducible bottom-up method empowered by both Azo and the timsTOF Pro will be generally applicable and greatly accelerate the throughput of large-scale quantitative proteomic studies. Raw data are available via the MassIVE repository with identifier MSV000087476.
15
Citation1
0
Save
1

One-Pot Exosome Proteomics Enabled by a Photocleavable Surfactant

Kevin Buck et al.Mar 19, 2022
+5
T
D
K
Abstract Exosomes are small extracellular vesicles (EVs) secreted by all cells and found in biological fluids, which can serve as minimally invasive liquid biopsies with high therapeutic and diagnostic potential. Mass spectrometry (MS)-based proteomics is a powerful technique to profile and quantify the protein content of exosomes but the current methods require laborious and time-consuming multi-step sample preparation that significantly limit throughput. Herein, we report a one-pot exosome proteomics method enabled by a photocleavable surfactant, Azo, for rapid and effective exosomal lysis, protein extraction, and digestion. We have applied this method to exosomes derived from isolated mammary fibroblasts and confidently identified 3,466 proteins and quantified 2,288 proteins using reversed-phase liquid chromatography coupled to trapped ion mobility spectrometry (TIMS) quadrupole time-of-flight mass spectrometer. 3,166 (91%) of the identified proteins are annotated in the exosome/EVs databases, ExoCarta and Vesiclepedia, including important exosomal markers, CD63, PDCD6IP, and SDCBP. This method is fast, simple, and highly effective at extracting exosomal proteins with high reproducibility for deep exosomal proteome coverage. We envision this method could be generally applicable for exosome proteomics applications in biomedical research, therapeutic interventions, and clinical diagnostics.
0

Directed Evolution of Genetically Encoded LYTACs for Cell-Mediated Delivery

Jonathan Yang et al.Jan 1, 2023
+7
S
E
J
Lysosome-targeting chimeras (LYTACs) are a promising therapeutic modality to drive the degradation of extracellular proteins. However, early versions of LYTAC contain synthetic glycopeptides that cannot be genetically encoded. Here we present our designs for a fully genetically encodable LYTAC (GELYTAC), making our tool compatible with integration into therapeutic cells for targeted delivery at diseased sites. To achieve this, we replaced the glycopeptide portion of LYTACs with the protein insulin like growth factor 2 (IGF2). After showing initial efficacy with wild type IGF2, we increased the potency of GELYTAC using directed evolution. Subsequently, we demonstrated that our engineered GELYTAC construct not only secretes from HEK293T cells but also from human primary T-cells to drive the uptake of various targets into receiver cells. Immune cells engineered to secrete GELYTAC thus represent a promising avenue for spatially-selective targeted protein degradation.
1

Bromodomain-containing Protein 4 Regulates Innate Inflammation in Airway Epithelial Cells via Modulation of Alternative Splicing

Morgan Mann et al.Jan 19, 2023
+6
Y
Y
M
Bromodomain-containing Protein 4 (BRD4) is a transcriptional regulator which coordinates gene expression programs controlling cancer biology, inflammation, and fibrosis. In airway viral infection, non-toxic BRD4-specific inhibitors (BRD4i) block the release of pro-inflammatory cytokines and prevent downstream remodeling. Although the chromatin modifying functions of BRD4 in inducible gene expression have been extensively investigated, its roles in post-transcriptional regulation are not as well understood. Based on its interaction with the transcriptional elongation complex and spliceosome, we hypothesize that BRD4 is a functional regulator of mRNA processing. To address this question, we combine data-independent analysis - parallel accumulation-serial fragmentation (diaPASEF) with RNA-sequencing to achieve deep and integrated coverage of the proteomic and transcriptomic landscapes of human small airway epithelial cells exposed to viral challenge and treated with BRD4i. The transcript-level data was further interrogated for alternative splicing analysis, and the resulting data sets were correlated to identify pathways subject to post-transcriptional regulation. We discover that BRD4 regulates alternative splicing of key genes, including Interferon-related Developmental Regulator 1 ( IFRD1 ) and X-Box Binding Protein 1 ( XBP1 ), related to the innate immune response and the unfolded protein response, respectively. These findings extend the transcriptional elongation-facilitating actions of BRD4 in control of post-transcriptional RNA processing in innate signaling.
Load More