Abstract Long single-molecular sequencing, such as PacBio circular consensus sequencing (CCS) and nanopore sequencing, is advantageous in detecting DNA 5-methylcytosine (5mC) in CpGs, especially in repetitive genomic regions. However, existing methods for detecting 5mCpGs using PacBio CCS are less accurate and robust. Here, we present ccsmeth, a deep-learning method to detect DNA 5mCpGs using CCS reads. We sequence PCR-treated and M.SssI-treated DNA of one human sample using PacBio CCS for training ccsmeth. Using long (≥10Kb) CCS reads, ccsmeth achieves 0.90 accuracy and 0.97 AUC on 5mCpG detection at single-molecule resolution. At the genome-wide site level, ccsmeth achieves >0.90 correlations with bisulfite sequencing and nanopore sequencing using only 10× reads. Furthermore, we develop a Nextflow pipeline, ccsmethphase, to detect haplotype-aware methylation using CCS reads, and then sequence a Chinese family trio to validate it. ccsmeth and ccsmethphase can be robust and accurate tools for detecting DNA 5mCs using PacBio CCS.