RL
Rick Lu
Author with expertise in Mechanisms and Applications of RNA Interference
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
598
h-index:
16
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An Efficient Identity-Based Batch Verification Scheme for Vehicular Sensor Networks

C. Zhang et al.Apr 1, 2008
+2
X
R
C
With the adoption of state-of-the-art telecommunication technologies for sensing and collecting traffic related information, Vehicular Sensor Networks (VSNs) have emerged as a new application scenario that is envisioned to revolutionize the human driving experiences and traffic flow control systems. To avoid any possible malicious attack and resource abuse, employing a digital signature scheme is widely recognized as the most effective approach for VSNs to achieve authentication, integrity, and validity. However, when the number of signatures received by a Roadside Unit (RSU) becomes large, a scalability problem emerges immediately, where the RSU could be difficult to sequentially verify each received signature within 300 ms interval according to the current Dedicated Short Range Communications (DSRC) broadcast protocol. We introduce an efficient batch signature verification scheme for communications between vehicles and RSUs (or termed vehicle- to-Infrastructure (V2I) communications), in which an RSU can verify multiple received signatures at the same time such that the total verification time can be dramatically reduced. We demonstrate that the proposed scheme can achieve conditional privacy preservation that is essential in VSNs, where each message launched by a vehicle is mapped to a distinct pseudo identity, while a trust authority can always retrieve the real identity of a vehicle from any pseudo identity. With the proposed scheme, since identity-based cryptography is employed in generating private keys for pseudo identities, certificates are not needed and thus transmission overhead can be significantly reduced.
0

AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery

Yue Xu et al.Jul 26, 2024
+10
A
H
Y
Abstract Ionizable lipid nanoparticles (LNPs) are seeing widespread use in mRNA delivery, notably in SARS-CoV-2 mRNA vaccines. However, the expansion of mRNA therapies beyond COVID-19 is impeded by the absence of LNPs tailored for diverse cell types. In this study, we present the AI-Guided Ionizable Lipid Engineering (AGILE) platform, a synergistic combination of deep learning and combinatorial chemistry. AGILE streamlines ionizable lipid development with efficient library design, in silico lipid screening via deep neural networks, and adaptability to diverse cell lines. Using AGILE, we rapidly design, synthesize, and evaluate ionizable lipids for mRNA delivery, selecting from a vast library. Intriguingly, AGILE reveals cell-specific preferences for ionizable lipids, indicating tailoring for optimal delivery to varying cell types. These highlight AGILE’s potential in expediting the development of customized LNPs, addressing the complex needs of mRNA delivery in clinical practice, thereby broadening the scope and efficacy of mRNA therapies.
0

Primitive macrophages enable long-term vascularization of human heart-on-a-chip platforms

Shira Landau et al.Jun 21, 2024
+14
G
H
S
The intricate anatomical structure and high cellular density of the myocardium complicate the bioengineering of perfusable vascular networks within cardiac tissues. In vivo neonatal studies highlight the key role of resident cardiac macrophages in post-injury regeneration and angiogenesis. Here, we integrate human pluripotent stem-cell-derived primitive yolk-sac-like macrophages within vascularized heart-on-chip platforms. Macrophage incorporation profoundly impacted the functionality and perfusability of microvascularized cardiac tissues up to 2 weeks of culture. Macrophages mitigated tissue cytotoxicity and the release of cell-free mitochondrial DNA (mtDNA), while upregulating the secretion of pro-angiogenic, matrix remodeling, and cardioprotective cytokines. Bulk RNA sequencing (RNA-seq) revealed an upregulation of cardiac maturation and angiogenesis genes. Further, single-nuclei RNA sequencing (snRNA-seq) and secretome data suggest that macrophages may prime stromal cells for vascular development by inducing insulin like growth factor binding protein 7 (IGFBP7) and hepatocyte growth factor (HGF) expression. Our results underscore the vital role of primitive macrophages in the long-term vascularization of cardiac tissues, offering insights for therapy and advancing heart-on-a-chip technologies.
0
Citation1
0
Save
0

SARS-CoV-2 pathogenesis in an angiotensin II–induced heart-on-a-chip disease model and extracellular vesicle screening

Qinghua Wu et al.Jul 5, 2024
+24
K
N
Q
Adverse cardiac outcomes in COVID-19 patients, particularly those with preexisting cardiac disease, motivate the development of human cell-based organ-on-a-chip models to recapitulate cardiac injury and dysfunction and for screening of cardioprotective therapeutics. Here, we developed a heart-on-a-chip model to study the pathogenesis of SARS-CoV-2 in healthy myocardium established from human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and a cardiac dysfunction model, mimicking aspects of preexisting hypertensive disease induced by angiotensin II (Ang II). We recapitulated cytopathic features of SARS-CoV-2-induced cardiac damage, including progressively impaired contractile function and calcium handling, apoptosis, and sarcomere disarray. SARS-CoV-2 presence in Ang II–treated hearts-on-a-chip decreased contractile force with earlier onset of contractile dysfunction and profoundly enhanced inflammatory cytokines compared to SARS-CoV-2 alone. Toward the development of potential therapeutics, we evaluated the cardioprotective effects of extracellular vesicles (EVs) from human iPSC which alleviated the impairment of contractile force, decreased apoptosis, reduced the disruption of sarcomeric proteins, and enhanced beta-oxidation gene expression. Viral load was not affected by either Ang II or EV treatment. We identified MicroRNAs miR-20a-5p and miR-19a-3p as potential mediators of cardioprotective effects of these EVs.
0
Citation1
0
Save
1

AGILE Platform: A Deep Learning-Powered Approach to Accelerate LNP Development for mRNA Delivery

Yulong Xu et al.Jun 2, 2023
+10
H
Y
Y
Abstract Ionizable lipid nanoparticles (LNPs) have seen widespread use in mRNA delivery for clinical applications, notably in SARS-CoV-2 mRNA vaccines. Despite their successful use, expansion of mRNA therapies beyond COVID-19 is impeded by the absence of LNPs tailored to different target cell types. The traditional process of LNP development remains labor-intensive and cost-inefficient, relying heavily on trial and error. In this study, we present the A I- G uided I onizable L ipid E ngineering (AGILE) platform, a synergistic combination of deep learning and combinatorial chemistry. AGILE streamlines the iterative development of ionizable lipids, crucial components for LNP-mediated mRNA delivery. This approach brings forth three significant features: efficient design and synthesis of combinatorial lipid libraries, comprehensive in silico lipid screening employing deep neural networks, and adaptability to diverse cell lines. Using AGILE, we were able to rapidly design, synthesize, and evaluate new ionizable lipids for mRNA delivery in muscle and immune cells, selecting from a library of over 10,000 candidates. Importantly, AGILE has revealed cell-specific preferences for ionizable lipids, indicating the need for different tail lengths and head groups for optimal delivery to varying cell types. These results underscore the potential of AGILE in expediting the development of customized LNPs. This could significantly contribute to addressing the complex needs of mRNA delivery in clinical practice, thereby broadening the scope and efficacy of mRNA therapies. One Sentence Summary AI and combinatorial chemistry expedite ionizable lipid creation for mRNA delivery.
1

Heart-on-a-chip model of immune-induced cardiac dysfunction reveals the role of free mitochondrial DNA and therapeutic effects of endothelial exosomes

Rick Lu et al.Aug 9, 2023
+15
Y
N
R
Abstract Cardiovascular disease continues to take more human lives than all cancer combined, prompting the need for improved research models and treatment options. Despite a significant progress in development of mature heart-on-a-chip models of fibrosis and cardiomyopathies starting from induced pluripotent stem cells (iPSCs), human cell-based models of myocardial inflammation are lacking. Here, we bioengineered a vascularized heart-on-a-chip system with circulating immune cells to model SARS-CoV-2-induced acute myocarditis. Briefly, we observed hallmarks of COVID-19-induced myocardial inflammation in the heart-on-a-chip model, as the presence of immune cells augmented the expression levels of proinflammatory cytokines, triggered progressive impairment of contractile function and altered intracellular calcium transient activities. An elevation of circulating cell-free mitochondrial DNA (ccf-mtDNA) was measured first in the in vitro heart-on-a-chip model and then validated in COVID-19 patients with low left ventricular ejection fraction (LVEF), demonstrating that mitochondrial damage is an important pathophysiological hallmark of inflammation induced cardiac dysfunction. Leveraging this platform in the context of SARS-CoV-2 induced myocardial inflammation, we established that administration of human umbilical vein-derived EVs effectively rescued the contractile deficit, normalized intracellular calcium handling, elevated the contraction force and reduced the ccf- mtDNA and chemokine release via TLR-NF-kB signaling axis.