DB
David Bikard
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
38
(74% Open Access)
Cited by:
7,138
h-index:
36
/
i10-index:
53
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data

Julian Garneau et al.Aug 9, 2017
Abstract The worrying rise of antibiotic resistance in pathogenic bacteria is leading to a renewed interest in bacteriophages as a treatment option. Novel sequencing technologies enable description of an increasing number of phage genomes, a critical piece of information to understand their life cycle, phage-host interactions, and evolution. In this work, we demonstrate how it is possible to recover more information from sequencing data than just the phage genome. We developed a theoretical and statistical framework to determine DNA termini and phage packaging mechanisms using NGS data. Our method relies on the detection of biases in the number of reads, which are observable at natural DNA termini compared with the rest of the phage genome. We implemented our method with the creation of the software PhageTerm and validated it using a set of phages with well-established packaging mechanisms representative of the termini diversity, i.e. 5′ cos (Lambda), 3′ cos (HK97), pac (P1), headful without a pac site (T4), DTR (T7) and host fragment (Mu). In addition, we determined the termini of nine Clostridium difficile phages and six phages whose sequences were retrieved from the Sequence Read Archive. PhageTerm is freely available (https://sourceforge.net/projects/phageterm), as a Galaxy ToolShed and on a Galaxy-based server (https://galaxy.pasteur.fr).
0
Citation491
0
Save
0

Cas9 specifies functional viral targets during CRISPR–Cas adaptation

Robert Heler et al.Feb 17, 2015
Clustered regularly interspaced short palindromic repeat (CRISPR) loci and their associated (Cas) proteins provide adaptive immunity against viral infection in prokaryotes. Upon infection, short phage sequences known as spacers integrate between CRISPR repeats and are transcribed into small RNA molecules that guide the Cas9 nuclease to the viral targets (protospacers). Streptococcus pyogenes Cas9 cleavage of the viral genome requires the presence of a 5′-NGG-3′ protospacer adjacent motif (PAM) sequence immediately downstream of the viral target. It is not known whether and how viral sequences flanked by the correct PAM are chosen as new spacers. Here we show that Cas9 selects functional spacers by recognizing their PAM during spacer acquisition. The replacement of cas9 with alleles that lack the PAM recognition motif or recognize an NGGNG PAM eliminated or changed PAM specificity during spacer acquisition, respectively. Cas9 associates with other proteins of the acquisition machinery (Cas1, Cas2 and Csn2), presumably to provide PAM-specificity to this process. These results establish a new function for Cas9 in the genesis of prokaryotic immunological memory. Bacterial CRISPR–Cas loci acquire short phage sequences called spacers that integrate between DNA repeats and how these viral sequences are chosen was unknown; in these studies of the type II CRISPR–Cas system of Streptococcus pyogenes, the Cas9 nuclease known to inactivate invading viral DNA was found to be required for the selection of functional spacers during CRISPR immunity. The once fanciful idea that bacteria might have immunological memory became accepted fact with the discovery that the CRISPR–Cas gene loci evolve rapidly to acquire short phage sequences, or spacers, which then integrate between CRISPR repeats and constitute a record of phage infection. These spacers are transcribed into small CRISPR RNAs (crRNAs) that are used to target the DNA of invading viruses. Two papers published in this issue of Nature describe molecular details about how bacteria create a DNA memory of the invading virus. Jennifer Doudna and colleagues show that the purified Escherichia coli Cas1–Cas2 complex integrates oligonucleotide DNA substrates into acceptor DNA in a manner similar to retroviral integrases and DNA transposases. Cas1 is the catalytic subunit, while Cas2 increases integration activity; together they form the minimal machinery required for spacer acquisition. Luciano Marraffini and colleagues show that in the type II CRISPR–Cas system of Streptococcus pyogenes, the Cas9 nuclease that inactivates invading viral DNA using the crRNA as a guide is also required for the incorporation of new spacer sequences, by a yet to be determined mechanism.
0
Citation372
0
Save
0

Conjugative DNA Transfer Induces the Bacterial SOS Response and Promotes Antibiotic Resistance Development through Integron Activation

Zeynep Baharoglu et al.Oct 21, 2010
Conjugation is one mechanism for intra- and inter-species horizontal gene transfer among bacteria. Conjugative elements have been instrumental in many bacterial species to face the threat of antibiotics, by allowing them to evolve and adapt to these hostile conditions. Conjugative plasmids are transferred to plasmidless recipient cells as single-stranded DNA. We used lacZ and gfp fusions to address whether conjugation induces the SOS response and the integron integrase. The SOS response controls a series of genes responsible for DNA damage repair, which can lead to recombination and mutagenesis. In this manuscript, we show that conjugative transfer of ssDNA induces the bacterial SOS stress response, unless an anti-SOS factor is present to alleviate this response. We also show that integron integrases are up-regulated during this process, resulting in increased cassette rearrangements. Moreover, the data we obtained using broad and narrow host range plasmids strongly suggests that plasmid transfer, even abortive, can trigger chromosomal gene rearrangements and transcriptional switches in the recipient cell. Our results highlight the importance of environments concentrating disparate bacterial communities as reactors for extensive genetic adaptation of bacteria.
0
Citation268
0
Save
Load More