SD
Susan Duncan
Author with expertise in Molecular Mechanisms of Photosynthesis and Photoprotection
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
7
(43% Open Access)
Cited by:
3
h-index:
17
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Quantitative RNA spatial profiling using single-molecule RNA FISH on plant tissue cryosections

Xue Zhang et al.Apr 9, 2024
ABSTRACT Single-molecule fluorescence in situ hybridization (smFISH) has emerged as a powerful tool to study gene expression dynamics with unparalleled precision and spatial resolution in a variety of biological systems. Recent advancements have expanded its application to encompass plant studies, yet a demand persists for a simple and robust smFISH method adapted to plant tissue sections. Here, we present an optimized smFISH protocol (cryo-smFISH) for visualizing and quantifying single mRNA molecules in plant tissue cryosections. This method exhibits remarkable sensitivity, capable of detecting low-expression transcripts, including long non-coding RNAs. Integrating a deep learning-based algorithm in our image analysis pipeline, our method enables us to assign RNA abundance precisely in nuclear and cytoplasmic compartments. Compatibility with Immunofluorescence also allows RNA and endogenous proteins to be visualized and quantified simultaneously. Finally, this study presents for the first time the use of smFISH for single-cell RNA sequencing (scRNA-seq) validation in plants. By extending the smFISH method to plant cryosections, an even broader community of plant scientists will be able to exploit the multiple potentials of quantitative transcript analysis at cellular and subcellular resolutions.
0

De novo annotation of the wheat pangenome reveals complexity and diversity of the hexaploid wheat pan-transcriptome

Ben White et al.Jan 1, 2024
Wheat is the most widely cultivated crop in the world with over 215 million hectares grown annually. However, to meet the demands of a growing global population, breeders face the challenge of increasing wheat production by approximately 60% within the next 40 years. The 10+ Wheat Genomes Project recently sequenced and assembled the genomes of 15 wheat cultivars to develop our understanding of genetic diversity and selection within the pan-genome of wheat. Here, we provide a wheat pan-transcriptome with de novo annotation and differential expression analysis for nine of these wheat cultivars, across multiple different tissues and whole seedlings sampled at dusk/dawn. Analysis of these de novo annotations facilitated the discovery of genes absent from the Chinese Spring reference, identified genes specific to particular cultivars and defined the core and dispensable genomes. Expression analysis across cultivars and tissues revealed conservation in expression between a large core set of homeologous genes, but also widespread changes in subgenome homeolog expression bias between cultivars. Co-expression network analysis revealed the impact of divergence of sub-genome homeolog expression and identified tissue-associated cultivar-specific expression profiles. In summary, this work provides both a valuable resource for the wider wheat community and reveals diversity in gene content and expression patterns between global wheat cultivars.
0

A high-throughput delayed fluorescence method reveals underlying differences in the control of circadian rhythms in Triticum aestivum and Brassica napus

Hannah Rees et al.Mar 7, 2019
Background A robust circadian clock has been implicated in plant resilience, resource-use efficiency, competitive growth and yield. A huge number of physiological processes are under circadian control in plants including: responses to biotic and abiotic stresses; flowering time; plant metabolism; and mineral uptake. Understanding how the clock functions in crops such as Triticum aestivum (bread wheat) and Brassica napus (oilseed rape) therefore has great agricultural potential. Delayed fluorescence (DF) imaging has been shown to be applicable to a wide range of plant species and requires no genetic transformation. Although DF has been used to measure period length of both mutants and wild ecotypes of Arabidopsis , this assay has never been systematically optimised for crop plants. The physical size of both B. napus and T. aestivum led us to develop a representative sampling strategy which enables high-throughput imaging of these crops.Results In this study, we describe the plant-specific optimisation of DF imaging to obtain reliable circadian phenotypes with the robustness and reproducibility to detect diverging periods between cultivars of the same species. We find that the age of plant material, light regime and temperature conditions all significantly effect DF rhythms and describe the optimal conditions for measuring robust rhythms in each species. We also show that sections of leaf can be used to obtain period estimates with improved throughput for larger sample size experiments.Conclusions We present an optimized protocol for high-throughput phenotyping of circadian period specific to two economically valuable crop plants. Application of this method revealed significant differences between the periods of several widely grown elite cultivars. This method also identified intriguing differential responses of circadian rhythms in T. aestivum compared to B. napus ; specifically the dramatic change to rhythm robustness when plants were imaged under constant light versus constant darkness. This points towards diverging networks underling circadian control in these two species.* DF : Delayed Fluorescence FFT-NLLS : Fast Fourier Transform Non-Linear Least Squares RAE : Relative Amplitude Error PSII : Photosystem II L:L : Constant light L:D : Light-dark cycles D:D : Constant Dark BnDFFS : Brassica napus Diversity Fixed Foundation Set ZT : Zeitgeber time BAMP : Baseline and amplitude CV : coefficient of variation
0

RNA G-quadruplex structures exist and function in vivo

Xiaofei Yang et al.Nov 12, 2019
Guanine-rich sequences are able to form complex RNA structures termed RNA G-quadruplexes in vitro . Because of their high stability, RNA G-quadruplexes are proposed to exist in vivo and are suggested to be associated with important biological relevance. However, there is a lack of direct evidence for RNA G-quadruplex formation in living cells. Therefore, it is unclear whether any purported functions are associated with the specific sequence content or the formation of an RNA G-quadruplex structure. Here, we profiled the landscape of those guanine-rich regions with the in vitro folding potential in the Arabidopsis transcriptome. We found a global enrichment of RNA G-quadruplexes with two G-quartets whereby the folding potential is strongly influenced by RNA secondary structures. Using in vitro and in vivo RNA chemical structure profiling, we determined that hundreds of RNA G-quadruplex structures are strongly folded in both Arabidopsis and rice, providing direct evidence of RNA G-quadruplex formation in living eukaryotic cells. Subsequent genetic and biochemical analysis showed that RNA G-quadruplex folding was sufficient to regulate translation and modulate plant growth. Our study reveals the existence of RNA G-quadruplex in vivo , and indicates that RNA G-quadruplex structures act as important regulators of plant development and growth.