JT
James Truman
Author with expertise in Neuroscience and Genetics of Drosophila Melanogaster
University of Washington, Janelia Research Campus, Helix (United States)
+ 7 more
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
21
(33% Open Access)
Cited by:
28
h-index:
84
/
i10-index:
247
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
37

Circuits for integrating learnt and innate valences in the fly brain

Claire Eschbach et al.Oct 24, 2023
+14
M
A
C
Abstract Animal behavior is shaped both by evolution and by individual experience. In many species parallel brain pathways are thought to encode innate and learnt behavior drives and as a result may link the same sensory cue to different actions if innate and learnt drives are in opposition. How these opposing drives are integrated into a single coherent action is not well understood. In insects, the Mushroom Body Output Neurons (MBONs) and the Lateral Horn Neurons (LHNs) are thought to provide the learnt and innate drives, respectively. However their patterns of convergence and the mechanisms by which their outputs are used to select actions are not well understood. We used electron microscopy reconstruction to comprehensively map the downstream targets of all MBONs in Drosophila larva and characterise their patterns of convergence with LHNs. We discovered convergence neurons that receive direct input from MBONs and LHNs and compare opposite behaviour drives. Functional imaging and optogenetic manipulation suggest these convergence neurons compute the overall predicted value of approaching or avoiding an odor and mediate action selection. Our study describes the circuit mechanisms allowing integration of opposing drives from parallel olfactory pathways.
1

Unveiling the sensory and interneuronal pathways of the neuroendocrine connectome inDrosophila

Sebastian Hückesfeld et al.Oct 24, 2023
+8
A
P
S
Abstract Neuroendocrine systems in animals maintain organismal homeostasis and regulate stress response. Although a great deal of work has been done on the neuropeptides and hormones that are released and act on target organs in the periphery, the synaptic inputs onto these neuroendocrine outputs in the brain are less well understood. Here, we use the transmission electron microscopy reconstruction of a whole central nervous system in the Drosophila larva to elucidate the sensory pathways and the interneurons that provide synaptic input to the neurosecretory cells projecting to the endocrine organs. Predicted by network modeling, we also identify a new carbon dioxide responsive network that acts on a specific set of neurosecretory cells and which include those expressing Corazonin (Crz) and Diuretic hormone 44 (DH44) neuropeptides. Our analysis reveals a neuronal network architecture for combinatorial action based on sensory and interneuronal pathways that converge onto distinct combinations of neuroendocrine outputs.
1
Citation4
0
Save
0

A developmental framework linking neurogenesis and circuit formation in the Drosophila CNS

Brandon Mark et al.May 7, 2020
+5
A
S
B
Abstract The mechanisms specifying neuronal diversity are well-characterized, yet it remains unclear how or if these mechanisms regulate neural circuit assembly. To address this, we mapped the developmental origin of 160 interneurons from seven bilateral neural progenitors (neuroblasts), and identify them in a synapse-scale TEM reconstruction of the Drosophila larval CNS. We find that lineages concurrently build the sensory and motor neuropils by generating sensory and motor hemilineages in a Notch-dependent manner. Neurons in a hemilineage share common synaptic targeting within the neuropil, which is further refined based on neuronal temporal identity. Connectome analysis shows that hemilineage-temporal cohorts share common connectivity. Finally, we show that proximity alone cannot explain the observed connectivity structure, suggesting hemilineage/temporal identity confers an added layer of specificity. Thus, we demonstrate that the mechanisms specifying neuronal diversity also govern circuit formation and function, and that these principles are broadly applicable throughout the nervous system.
0
Citation4
0
Save
65

Central processing of leg proprioception inDrosophila

Sweta Agrawal et al.Oct 24, 2023
+4
A
E
S
Abstract Proprioception, the sense of self-movement and position, is mediated by mechanosensory neurons that detect diverse features of body kinematics. Although proprioceptive feedback is crucial for accurate motor control, little is known about how downstream circuits transform limb sensory information to guide motor output. Here, we investigate neural circuits in Drosophila that process proprioceptive information from the fly leg. We identify three cell-types from distinct developmental lineages that are positioned to receive input from proprioceptor subtypes encoding tibia position, movement, and vibration. 13Bα neurons encode femur-tibia joint angle and mediate postural changes in tibia position. 9Aα neurons also drive changes in leg posture, but encode a combination of directional movement, high frequency vibration, and joint angle. Activating 10Bα neurons, which encode tibia vibration at specific joint angles, elicits pausing in walking flies. Altogether, our results reveal that central circuits integrate information across proprioceptor subtypes to construct complex sensorimotor representations that mediate diverse behaviors, including reflexive control of limb posture and detection of leg vibration.
65
Citation3
0
Save
1

H3 K27M and EZHIP impede H3K27-methylation spreading by inhibiting allosterically stimulated PRC2

Siddhant Jain et al.Oct 24, 2023
+11
S
A
S
Abstract Diffuse midline gliomas and posterior fossa type-A ependymomas contain the highly recurrent histone H3 K27M mutation and the H3 K27M-mimic EZHIP, respectively. In vitro , H3 K27M and EZHIP are competitive inhibitors of Polycomb Repressive Complex 2 (PRC2) lysine methyltransferase activity. In vivo , these proteins reduce overall H3K27me3 levels, however residual peaks of H3K27me3 remain at CpG islands through an unknown mechanism. Here, we report that EZHIP and H3 K27M preferentially interact with an allosterically activated form of PRC2 in vivo . The formation of H3 K27M- and EZHIP-PRC2 complexes occurs at CpG islands containing H3K27me3 and impedes PRC2 and H3K27me3 spreading. While EZHIP is not found outside of placental mammals, we find that expression of human EZHIP reduces H3K27me3 in Drosophila melanogaster through a conserved molecular mechanism. Our results highlight the mechanistic similarities between EZHIP and H3 K27M in vivo and provide mechanistic insight for the retention of residual H3K27me3 in tumors driven by these oncogenes.
1
Paper
Citation1
0
Save
0

Multilevel feedback architecture for adaptive regulation of learning in the insect brain

Claire Eschbach et al.May 6, 2020
+13
M
A
C
Modulatory ( e.g. dopaminergic) neurons provide 'teaching signals' that drive associative learning across the animal kingdom, but the circuit mechanisms by which these signals are computed are still unclear. To provide a basis for understanding the circuit implementation of learning algorithms, we generated a synaptic-resolution connectivity map of the circuits upstream of all modulatory neurons in an associative learning center, the mushroom body (MB) of the Drosophila larva. We discovered afferent pathways from sensory neurons and a large number of one-step and two-step feedback pathways originating from MB output neurons. We also found a surprising density of cross-compartment feedback pathways that link distinct memory systems ( e.g. aversive and appetitive). This architecture suggests that the MB functions as an interconnected ensemble during learning and that any previously formed memories of a stimulus can potentially regulate future learning about that stimulus. We functionally confirmed some of the structural pathways and found that some modulatory neurons compare inhibitory input from their own compartment and excitatory input from compartments of opposite valence, potentially enabling them to more accurately compute predicted values of stimuli. We developed a model of the circuit constrained by the connectome and functional data and used it to explore the computational advantages offered by the newly discovered feedback motifs. The model shows that the observed feedback pathways increase the network′s performance on complex learning tasks. It also shows that cross-compartment connections support the computation of predicted values and improve performance on higher-order learning tasks. Our study provides the most detailed view to date of a brain circuit that computes teaching signals and provides insights into the architectural motifs that support reinforcement learning in a biological system.
0

The wiring diagram of a glomerular olfactory system

Matthew Berck et al.May 6, 2020
+9
L
A
M
The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior.
0

Mapping neurons and brain regions underlying sensorimotor decisions and sequences in Drosophila

Tihana Jovanic et al.May 7, 2020
M
J
J
T
Nervous systems across the animal kingdom have the ability to select appropriate actions and sequences of actions in response to sensory cues. The circuit mechanisms by which nervous systems achieve choice, stability and transitions between behaviors are still incompletely understood. To identify neurons and brain areas involved in controlling these processes, we developed an approach where we combined a large-scale neuronal inactivation screen with an automated action detection of sensorimotor decisions and sequences in response to a sensory cue in Drosophila larva. We analyzed behaviors from 2.9x105 larvae and identified 51 candidate lines for sensory processing and 24 candidate lines for competitive interactions between actions during sensorimotor decisions. We also detected phenotype categories for sequence transitions consistent with a model of sequence generation where transitions and reversals are independently controlled. These findings provide the basis for understanding how sensorimotor decisions and sequence transition are controlled by the nervous system.
0

Organization Of The Drosophila Larval Visual Circuit

Ivan Larderet et al.May 7, 2020
+7
N
P
I
Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on the types of photoreceptor neurons (PR) present, the organization of the eye and the wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create parallel circuits potentially underlying the computation of absolute light intensity and temporal light changes already within this first visual processing center. Locally processed visual information then signals via dedicated projection interneurons to higher brain areas including the lateral horn and mushroom body. The stratified structure of the LON suggests common organizational principles with the adult fly and vertebrate visual systems. The complete synaptic wiring diagram of the LON paves the way to understanding how circuits with reduced numerical complexity control wide ranges of behaviors.
0

The Complete Connectome Of A Learning And Memory Center In An Insect Brain

Katharina Eichler et al.May 6, 2020
+13
Y
A
K
Associating stimuli with positive or negative reinforcement is essential for survival, but a complete wiring diagram of a higher-order circuit supporting associative memory has not been previously available. We reconstructed one such circuit at synaptic resolution, the Drosophila larval mushroom body, and found that most Kenyon cells integrate random combinations of inputs but a subset receives stereotyped inputs from single projection neurons. This organization maximizes performance of a model output neuron on a stimulus discrimination task. We also report a novel canonical circuit in each mushroom body compartment with previously unidentified connections: reciprocal Kenyon cell to modulatory neuron connections, modulatory neuron to output neuron connections, and a surprisingly high number of recurrent connections between Kenyon cells. Stereotyped connections between output neurons could enhance the selection of learned responses. The complete circuit map of the mushroom body should guide future functional studies of this learning and memory center.
Load More