AN
Arash Nikoubashman
Author with expertise in Regulation of RNA Processing and Function
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
6
(33% Open Access)
Cited by:
6
h-index:
29
/
i10-index:
76
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Conformational Properties of Polymers at Droplet Interfaces as Model Systems for Disordered Proteins

Jiahui Wang et al.Jul 31, 2023
Polymer models serve as useful tools for studying the formation and physical properties of biomolecular condensates. In recent years, the interface dividing the dense and dilute phases of condensates has been discovered to be closely related to their functionality, but the conformational preferences of the constituent proteins remain unclear. To elucidate this, we perform molecular simulations of a droplet formed by liquid‒liquid phase separation of homopolymers, as a surrogate model for the prion-like low-complexity domains. By systematically analyzing the polymer conformations at different locations in the droplet, we find that the chains become compact at the droplet interface compared to the droplet interior. Further, segmental analysis revealed that the end sections of the chains are enriched at the interface to maximize conformational entropy, and are more expanded than the middle sections of the chains. We find that the majority of chain segments lie tangential to the droplet surface and only the chain ends tend to align perpendicular to the interface. These trends also hold for the natural proteins FUC LC and LAF-1 RGG, which exhibit more compact chain conformations at the interface compared with the droplet interior. Our findings provide important insights into the interfacial properties of biomolecular condensates and highlight the value of using simple polymer physics models to understand the underlying mechanisms.
15

Sequence-Dependent Material Properties of Biomolecular Condensates and their Relation to Dilute Phase Conformations

Dinesh Devarajan et al.Jan 1, 2023
Material properties of phase-separated biomolecular assemblies, enriched with disordered proteins, dictate their ability to participate in many cellular functions. Despite the significant effort dedicated to understanding how the sequence of the disordered protein drives its phase separation to form condensates, little is known about the sequence determinants of condensate material properties. Here, we computationally decipher these relationships for charged disordered proteins using model sequences comprised of glutamic acid and lysine residues as well as naturally occurring sequences of LAF19s RGG domain and DDX49s N-terminal domain. We do so by delineating how the arrangement of oppositely charged residues within these sequences influences the dynamical, rheological, and interfacial properties of the condensed phase through equilibrium and non-equilibrium molecular simulations. Our computations yield material properties that are quantitatively comparable with experimentally characterized condensate systems. Interestingly, we find that the material properties of both the model and natural proteins respond similarly to the segregation of charges, despite their very different sequence compositions. Condensates of the highly charge-segregated sequences exhibit slower dynamics than the uniformly charge-patterned sequences, because of their comparatively long-lived molecular contacts between oppositely charged residues. Surprisingly, the molecular interactions within the condensate are highly similar to those within a single-chain for all sequences. Consequently, the condensate material properties of charged disordered proteins are strongly correlated with their dense phase contact dynamics and their single-chain structural properties. Our findings demonstrate the potential to harness the sequence characteristics of disordered proteins for predicting and engineering the material properties of functional condensates, with insights from the dilute phase properties.
0

Sequence-Dependent Conformational Transitions of Disordered Proteins During Condensation

Jiahui Wang et al.Jan 1, 2024
Intrinsically disordered proteins (IDPs) can form biomolecular condensates through phase separation. It is recognized that the conformation of IDPs in the dense and dilute phases as well as at the interfaces of condensates can critically impact the resulting properties associated with their functionality. However, a comprehensive understanding of the conformational transitions of IDPs during condensation remains elusive. In this study, we employ a coarse-grained polyampholyte model, comprising an equal number of oppositely charged residues -- glutamic acid and lysine -- whereby conformations and phase behavior can be readily tuned by altering the protein sequence. By manipulating the sequence patterns from perfectly alternating to block-like, we obtain chains with ideal-like conformations to semi-compact structures in the dilute phase, while in the dense phase, the chain conformation is approximately that of an ideal chain, irrespective of the protein sequence. By performing simulations at different concentrations, we find that the chains assemble from the dilute phase through small oligomeric clusters to the dense phase, accompanied by a gradual swelling of the individual chains. We further demonstrate that these findings are applicable to several naturally occurring proteins involved in the formation of biological condensates. Concurrently, we delve deeper into the chain conformations within the condensate, revealing that chains at the interface show a strong sequence dependence, but remain more collapsed than those in the bulk-like dense phase. This study addresses critical gaps in our knowledge of IDP conformations within condensates as a function of protein sequence.
0

Dynamics of Nanoparticles in Solutions of Semiflexible Ring Polymers

Shivraj Kotkar et al.Dec 6, 2024
We use hybrid molecular dynamics-multiparticle collision dynamics (MD-MPCD) simulations to investigate the influence of chain stiffness on the transport of nanoparticles (NPs) through solutions of semiflexible ring polymers. The NPs exhibit subdiffusive dynamics on short time scales before transitioning to normal diffusion at longer times. The terminal NP diffusivity decreases with increasing ring stiffness, similar to the behavior observed in solutions of semiflexible linear chains. The NP subdiffusive exponent is found to be strongly correlated with that of the polymer center of mass (COM) for the range of chain stiffnesses examined, which is at odds with the pronounced decoupling of the NP and polymer COM motions previously observed upon increasing the stiffness of linear chains. Our analysis indicates that these marked differences in the intermediate dynamics are rooted in distinct structural changes that emerge with increasing bending stiffness: Stiffer ring polymers adopt increasingly circular conformations and stack into transient tubes. The void space created near the ring centers is occupied by NPs and other polymers, resulting in strong dynamic coupling on short time scales.