PC
Pi-Chuan Chang
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
29
(83% Open Access)
Cited by:
3,757
h-index:
29
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome

Aaron Wenger et al.Aug 12, 2019
The DNA sequencing technologies in use today produce either highly accurate short reads or less-accurate long reads. We report the optimization of circular consensus sequencing (CCS) to improve the accuracy of single-molecule real-time (SMRT) sequencing (PacBio) and generate highly accurate (99.8%) long high-fidelity (HiFi) reads with an average length of 13.5 kilobases (kb). We applied our approach to sequence the well-characterized human HG002/NA24385 genome and obtained precision and recall rates of at least 99.91% for single-nucleotide variants (SNVs), 95.98% for insertions and deletions <50 bp (indels) and 95.99% for structural variants. Our CCS method matches or exceeds the ability of short-read sequencing to detect small variants and structural variants. We estimate that 2,434 discordances are correctable mistakes in the ‘genome in a bottle’ (GIAB) benchmark set. Nearly all (99.64%) variants can be phased into haplotypes, further improving variant detection. De novo genome assembly using CCS reads alone produced a contiguous and accurate genome with a contig N50 of >15 megabases (Mb) and concordance of 99.997%, substantially outperforming assembly with less-accurate long reads. High-fidelity reads improve variant detection and genome assembly on the PacBio platform.
0
Citation1,171
0
Save
1

Pangenome graph construction from genome alignments with Minigraph-Cactus

Glenn Hickey et al.May 10, 2023
Pangenome references address biases of reference genomes by storing a representative set of diverse haplotypes and their alignment, usually as a graph. Alternate alleles determined by variant callers can be used to construct pangenome graphs, but advances in long-read sequencing are leading to widely available, high-quality phased assemblies. Constructing a pangenome graph directly from assemblies, as opposed to variant calls, leverages the graph’s ability to represent variation at different scales. Here we present the Minigraph-Cactus pangenome pipeline, which creates pangenomes directly from whole-genome alignments, and demonstrate its ability to scale to 90 human haplotypes from the Human Pangenome Reference Consortium. The method builds graphs containing all forms of genetic variation while allowing use of current mapping and genotyping tools. We measure the effect of the quality and completeness of reference genomes used for analysis within the pangenomes and show that using the CHM13 reference from the Telomere-to-Telomere Consortium improves the accuracy of our methods. We also demonstrate construction of a Drosophila melanogaster pangenome. Constructing genome graphs directly from genome assemblies overcomes single-reference bias.
1
Citation61
0
Save
0

A deep learning approach to pattern recognition for short DNA sequences

Akosua Busia et al.Jun 22, 2018
Abstract Motivation Inferring properties of biological sequences--such as determining the species-of-origin of a DNA sequence or the function of an amino-acid sequence--is a core task in many bioinformatics applications. These tasks are often solved using string-matching to map query sequences to labeled database sequences or via Hidden Markov Model-like pattern matching. In the current work we describe and assess an deep learning approach which trains a deep neural network (DNN) to predict database-derived labels directly from query sequences. Results We demonstrate this DNN performs at state-of-the-art or above levels on a difficult, practically important problem: predicting species-of-origin from short reads of 16S ribosomal DNA. When trained on 16S sequences of over 13,000 distinct species, our DNN achieves read-level species classification accuracy within 2.0% of perfect memorization of training data, and produces more accurate genus-level assignments for reads from held-out species than k -mer, alignment, and taxonomic binning baselines. Moreover, our models exhibit greater robustness than these existing approaches to increasing noise in the query sequences. Finally, we show that these DNNs perform well on experimental 16S mock community dataset. Overall, our results constitute a first step towards our long-term goal of developing a general-purpose deep learning approach to predicting meaningful labels from short biological sequences. Availability TensorFlow training code is available through GitHub ( https://github.com/tensorflow/models/tree/master/research ). Data in TensorFlow TFRecord format is available on Google Cloud Storage ( gs://brain-genomics-public/research/seq2species/ ). Contact seq2species-interest@google.com Supplementary information Supplementary data are available in a separate document.
0
Citation53
0
Save
108

Haplotype-aware variant calling enables high accuracy in nanopore long-reads using deep neural networks

Kishwar Shafin et al.Mar 5, 2021
Abstract Long-read sequencing has the potential to transform variant detection by reaching currently difficult-to-map regions and routinely linking together adjacent variations to enable read based phasing. Third-generation nanopore sequence data has demonstrated a long read length, but current interpretation methods for its novel pore-based signal have unique error profiles, making accurate analysis challenging. Here, we introduce a haplotype-aware variant calling pipeline PEPPER-Margin-DeepVariant that produces state-of-the-art variant calling results with nanopore data. We show that our nanopore-based method outperforms the short-read-based single nucleotide variant identification method at the whole genome-scale and produces high-quality single nucleotide variants in segmental duplications and low-mappability regions where short-read based genotyping fails. We show that our pipeline can provide highly-contiguous phase blocks across the genome with nanopore reads, contiguously spanning between 85% to 92% of annotated genes across six samples. We also extend PEPPER-Margin-DeepVariant to PacBio HiFi data, providing an efficient solution with superior performance than the current WhatsHap-DeepVariant standard. Finally, we demonstrate de novo assembly polishing methods that use nanopore and PacBio HiFi reads to produce diploid assemblies with high accuracy (Q35+ nanopore-polished and Q40+ PacBio-HiFi-polished).
108
Citation29
0
Save
Load More