JB
Joseph Buxbaum
Author with expertise in Autism Spectrum Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
104
(73% Open Access)
Cited by:
39,501
h-index:
134
/
i10-index:
429
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Synaptic, transcriptional and chromatin genes disrupted in autism

Silvia Rubeis et al.Oct 29, 2014
The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability–transcription coupling, as well as histone-modifying enzymes and chromatin remodellers—most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones. Whole-exome sequencing in a large autism study identifies over 100 autosomal genes that are likely to affect risk for the disorder; these genes, which show unusual evolutionary constraint against mutations, carry de novo loss-of-function mutations in over 5% of autistic subjects and many function in synaptic, transcriptional and chromatin-remodelling pathways. Autism spectrum disorder (ASD) is a broad group of brain development disorders, including autism, childhood disintegrative disorder and Asperger's syndrome, characterized by impaired social interaction and communication, repetitive behaviour and restricted interests. Two groups reporting in this issue of Nature have used large-scale whole-exome sequencing to examine the contribution of inherited and germline de novo mutations to ASD risk. Silvia De Rubeis et al. analysed DNA samples from 3,871 autism cases and 9,937 ancestry-matched or parental controls and identify more than 100 autosomal genes that are likely to affect risk for the disease. De novo loss-of-function mutations were detected in more than 5% of autistic subjects. Many of the associated gene products appear to function in synaptic, transcriptional, and chromatin remodelling pathways. Ivan Iossifov et al. sequenced exomes from more than 2,500 families, each with one child with ASD. They identify 27 high-confidence gene targets and estimate that 13% of de novo missense mutations and 43% of de novo 'likely gene-disrupting' (LGD) mutations contribute to 12% and 9% of diagnoses, respectively.
0
Citation2,476
0
Save
0

Patterns and rates of exonic de novo mutations in autism spectrum disorders

Benjamin Neale et al.Apr 3, 2012
Exome sequencing of 175 autism spectrum disorder parent–child trios reveals that few de novo point mutations have a role in autism spectrum disorder and those that do are distributed across many genes and are incompletely penetrant, further supporting extreme genetic heterogeneity of this spectrum disorder. Although it is well accepted that genetics makes a strong contribution to autism spectrum disorder, most of the underlying causes of the condition remain unknown. Three groups present large-scale exome-sequencing studies of individuals with sporadic autism spectrum disorder, including many parent–child trios and unaffected siblings. The overall message from the three papers is that there is extreme locus heterogeneity among autistic individuals, with hundreds of genes involved in the condition, and with no single gene contributing to more than a small fraction of cases. Sanders et al. report the association of the gene SCN2A, previously identified in epilepsy syndromes, with the risk of autism. Neale et al. find strong evidence that CHD8 and KATNAL2 are autism risk factors. O'Roak et al. observe that a large proportion of the mutated proteins have crucial roles in fundamental developmental pathways, including β-catenin and p53 signalling. Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified1,2. To identify further genetic risk factors, here we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n = 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant, and the overall rate of mutation is only modestly higher than the expected rate. In contrast, the proteins encoded by genes that harboured de novo missense or nonsense mutations showed a higher degree of connectivity among themselves and to previous ASD genes3 as indexed by protein-protein interaction screens. The small increase in the rate of de novo events, when taken together with the protein interaction results, are consistent with an important but limited role for de novo point mutations in ASD, similar to that documented for de novo copy number variants. Genetic models incorporating these data indicate that most of the observed de novo events are unconnected to ASD; those that do confer risk are distributed across many genes and are incompletely penetrant (that is, not necessarily sufficient for disease). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5- to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case–control study provide strong evidence in favour of CHD8 and KATNAL2 as genuine autism risk factors.
0
Citation1,708
0
Save
0

Autism genome-wide copy number variation reveals ubiquitin and neuronal genes

Joseph Glessner et al.Apr 28, 2009
Several lines of evidence point to genetic involvement in autism spectrum disorders (ASDs), neurodevelopmental and neuropsychiatric disorders characterized by impaired verbal communication and social interaction. The clinical and genetic complexities of the condition make it difficult to identify susceptibility factors, but two related studies now present robust evidence for a genetic involvement. The first, a genome-wide association study, identifies six single-nucleotide polymorphisms strongly associated with autism. These variants lie between two genes encoding neuronal cell-adhesion molecules (cadherins 9 and 10), suggesting possible involvement in ASD pathogenesis. The second study used copy number variation screens to identify genetic variants in two major gene pathways in children with ASDs. The changes are in the ubiquitin pathway, which has previously been associated with neurological disease, and in genes for neuronal cell-adhesion molecules. Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by impairments in social and communication skills. Accumulating evidence suggests a genetic component to ASDs, and here a two-stage, genome-wide approach is used to identify candidate genomic loci enriched in ASD cases. The majority of these loci are found to be involved in neuronal adhesion and ubiquitin degradation, suggesting novel susceptibility mechanisms. Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins1,2,3,4. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs5,6,7,8,9. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with ∼550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11, 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 × 10-3). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 × 10-3). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 × 10-6). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.
0
Citation1,369
0
Save
Load More