AK
Annchen Knodt
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
31
(45% Open Access)
Cited by:
771
h-index:
34
/
i10-index:
62
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

General functional connectivity: Shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks

M. Elliott et al.Jan 30, 2019
Intrinsic connectivity, measured using resting-state fMRI, has emerged as a fundamental tool in the study of the human brain. However, due to practical limitations, many studies do not collect enough resting-state data to generate reliable measures of intrinsic connectivity necessary for studying individual differences. Here we present general functional connectivity (GFC) as a method for leveraging shared features across resting-state and task fMRI and demonstrate in the Human Connectome Project and the Dunedin Study that GFC offers better test-retest reliability than intrinsic connectivity estimated from the same amount of resting-state data alone. Furthermore, at equivalent scan lengths, GFC displayed higher estimates of heritability than resting-state functional connectivity. We also found that predictions of cognitive ability from GFC generalized across datasets, performing as well or better than resting-state or task data alone. Collectively, our work suggests that GFC can improve the reliability of intrinsic connectivity estimates in existing datasets and, subsequently, the opportunity to identify meaningful correlates of individual differences in behavior. Given that task and resting-state data are often collected together, many researchers can immediately derive more reliable measures of intrinsic connectivity through the adoption of GFC rather than solely using resting-state data. Moreover, by better capturing heritable variation in intrinsic connectivity, GFC represents a novel endophenotype with broad applications in clinical neuroscience and biomarker discovery.
1

Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort

M. Elliott et al.Dec 10, 2019
Abstract An individual’s brainAGE is the difference between chronological age and age predicted from machine-learning models of brain-imaging data. BrainAGE has been proposed as a biomarker of age-related deterioration of the brain. Having an older brainAGE has been linked to Alzheimer’s, dementia, and mortality. However, these findings are largely based on cross-sectional associations which can confuse age differences with cohort differences. To illuminate the validity of brainAGE as a biomarker of accelerated brain aging, a study is needed of a large cohort all born in the same year who nevertheless vary on brainAGE. In the Dunedin Study, a population-representative 1972–73 birth cohort, we measured brainAGE at age 45 years, as well as the pace of biological aging and cognitive decline in longitudinal data from childhood to midlife ( N = 869). In this cohort, all chronological age 45 years, brainAGE was measured reliably (ICC = 0.81) and ranged from 24 to 72 years. Those with older midlife brainAGEs tended to have poorer cognitive function in both adulthood and childhood, as well as impaired brain health at age 3. Furthermore, those with older brainAGEs had an accelerated pace of biological aging, older facial appearance, and early signs of cognitive decline from childhood to midlife. These findings help to validate brainAGE as a potential surrogate biomarker for midlife intervention studies that seek to measure dementia-prevention efforts in midlife. However, the findings also caution against the assumption that brainAGE scores represent only age-related deterioration of the brain as they may also index central nervous system variation present since childhood.
0

Genetic Determinants of Cortical Structure (Thickness, Surface Area and Volumes) among Disease Free Adults in the CHARGE Consortium

Ivana Kolčić et al.Sep 9, 2018
Abstract Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and cognitive function, and in neurological and psychiatric diseases. We examined heritability, genetic correlations and genome-wide associations of cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,822 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, and their biological implications explored using bioinformatic annotation and pathway analyses. We identified genetic heterogeneity between cortical measures and brain regions, and 161 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There was enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging.
0
Citation24
0
Save
0

Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth-cohort

M. Elliott et al.Jul 26, 2019
Abstract An individual’s brain-age is the difference between chronological age and age predicted from machine-learning models of brain-imaging data. Brain-age has been proposed as a biomarker of age-related deterioration of the brain. Having an older brain-age has been linked to Alzheimer’s, dementia and mortality. However, these findings are largely based on cross-sectional associations which can confuse age differences with cohort differences. To illuminate the validity of brain-age a biomarker of accelerated brain aging, a study is needed of a large cohort all born the same year who nevertheless vary on brain-age. In a population-representative 1972-73 birth cohort we measured brain-age at age 45, as well as the pace of biological aging and cognitive decline in longitudinal data from childhood to midlife (N=869). In this cohort, all chronological age 45 years, brain-age was measured reliably (ICC=.81) and ranged from 24 to 72 years. Those with older midlife brain-ages tended to have poorer cognitive function in both adulthood and childhood, as well as impaired brain health at age 3. Furthermore, those with older brain-ages had an accelerated pace of biological aging, older facial appearance and early signs of cognitive decline from childhood to midlife. These findings help to validate brain-age as a potential surrogate biomarker for midlife intervention studies that seek to measure treatment response to dementia-prevention efforts in midlife. However, the findings also caution against the assumption that brain-age scores represent only age-related deterioration of the brain as they may also index central nervous system variation present since childhood.
21

Genetic variants for head size share genes and pathways with cancer

Maria Knol et al.Jul 16, 2020
Abstract The size of the human head is determined by growth in the first years of life, while the rest of the body typically grows until early adulthood 1 . Such complex developmental processes are regulated by various genes and growth pathways 2 . Rare genetic syndromes have revealed genes that affect head size 3 , but the genetic drivers of variation in head size within the general population remain largely unknown. To elucidate biological pathways underlying the growth of the human head, we performed the largest genome-wide association study on human head size to date (N = 79,107). We identified 67 genetic loci, 50 of which are novel, and found that these loci are preferentially associated with head size and mostly independent from height. In subsequent neuroimaging analyses, the majority of genetic variants demonstrated widespread effects on the brain, whereas the effects of 17 variants could be localized to one or two specific brain regions. Through hypothesis-free approaches, we find a strong overlap of head size variants with both cancer pathways and cancer genes. Gene set analyses showed enrichment for different types of cancer and the p53, Wnt and ErbB signalling pathway. Genes overlapping or close to lead variants – such as TP53 , PTEN and APC – were enriched for genes involved in macrocephaly syndromes (up to 37-fold) and high-fidelity cancer genes (up to 9-fold), whereas this enrichment was not seen for human height variants. This indicates that genes regulating early brain and cranial growth are associated with a propensity to neoplasia later in life, irrespective of height. Our results warrant further investigations of the link between head size and cancer, as well as its clinical implications in the general population.
21
Citation6
0
Save
0

A Connectome Wide Functional Signature of Transdiagnostic Risk for Mental Illness

M. Elliott et al.Sep 29, 2017
Abstract Background High rates of comorbidity, shared risk, and overlapping therapeutic mechanisms have led psychopathology research towards transdiagnostic dimensional investigations of clustered symptoms. One influential framework accounts for these transdiagnostic phenomena through a single general factor, sometimes referred to as the ‘p’ factor, associated with risk for all common forms of mental illness. Methods Here we build on past research identifying unique structural neural correlates of the p factor by conducting a data-driven analysis of connectome wide intrinsic functional connectivity (n = 605). Results We demonstrate that higher p factor scores and associated risk for common mental illness maps onto hyper-connectivity between visual association cortex and both frontoparietal and default mode networks. Conclusions These results provide initial evidence that the transdiagnostic risk for common forms of mental illness is associated with patterns of inefficient connectome wide intrinsic connectivity between visual association cortex and networks supporting executive control and self-referential processes, networks which are often impaired across categorical disorders.
0

Convergent evidence for predispositional effects of brain gray matter volume on alcohol consumption

David Baranger et al.Apr 13, 2018
ABSTRACT Background Alcohol use has been reliably associated with smaller subcortical and cortical regional gray matter volumes (GMVs). Whether these associations reflect shared predisposing risk factors and/or causal consequences of alcohol use remains poorly understood. Methods Data came from 3 neuroimaging samples (total n=2,423), spanning childhood/adolescence to middle age, with prospective or family-based data. First, we identified replicable GMV correlates of alcohol use. Next, we used family-based and longitudinal data to test whether these associations may plausibly reflect a predispositional liability for alcohol use, and/or a causal consequence of alcohol use. Finally, we evaluated whether GWAS-defined genomic risk for alcohol consumption is enriched for genes preferentially expressed in regions identified in our neuroimaging analyses, using heritability and gene-set enrichment, and transcriptome-wide association study (TWAS) approaches. Results Smaller right dorsolateral prefrontal cortex (DLPFC; i.e., middle and superior frontal gyri) and insula GMVs were associated with increased alcohol use across samples. Family-based and prospective longitudinal data suggest these associations are genetically conferred and that DLPFC GMV prospectively predicts future use and initiation. Genomic risk for alcohol use was enriched in gene-sets preferentially expressed in the DLPFC and associated with differential expression of C16orf93 , CWF19L1 , and C18orf8 in the DLPFC. Conclusions These data suggest that smaller DLPFC and insula GMV plausibly represent predispositional risk factors for, as opposed to consequences of, alcohol use. Alcohol use, particularly when heavy, may potentiate these predispositional risk factors. DLPFC and insula GMV represent promising biomarkers for alcohol consumption liability and related psychiatric and behavioral phenotypes.
0
Citation1
0
Save
0

A GWAS-Derived Polygenic Score for Interleukin-1β is Associated with Hippocampal Volume in Two Samples

Reut Avinun et al.Jan 14, 2019
Accumulating research suggests that the pro-inflammatory cytokine interleukin-1β (IL-1β) has a modulatory effect on the hippocampus, a brain structure important for learning and memory as well as linked with both psychiatric and neurodegenerative disorders. Here, we use an imaging genetics strategy to test an association between an IL-1β polygenic score, derived from summary statistics of a recent genome-wide association study (GWAS) of circulating cytokines, and hippocampal volume, in two independent samples. In the first sample of 512 non-Hispanic Caucasian university students (274 women, mean age 19.78 years, SD=1.24) from the Duke Neurogenetics Study, we identified a significant positive correlation between higher polygenic scores, which presumably reflect higher circulating IL-1β levels, and average hippocampal volume. This positive association was successfully replicated in a second sample of 7,960 white British volunteers (4,158 women, mean age 62.63 years, SD=7.45) from the UK Biobank. Collectively, our results suggest that a functional GWAS-derived score of IL-1β blood circulating levels affects hippocampal volume, and lend further support in humans, to the link between IL-1β and the structure of the hippocampus.
Load More