ABSTRACT Understanding how cells remember previous mechanical environments to influence their fate, or mechanical memory, informs the design of biomaterials and therapies in medicine. Current regeneration therapies require two-dimensional (2D) cell expansion processes to achieve large cell populations critical for the repair of damaged (e.g. connective and musculoskeletal) tissues. However, the influence of mechanical memory on cell fate following expansion is unknown, and mechanisms defining how physical environments influence the therapeutic potential of cells remain poorly understood. Here, we show that the organization of histone H3 trimethylated at lysine 9 (H3K9me3) and expression of tissue-identifying genes in primary cartilage cells (chondrocytes) transferred to three-dimensional (3D) hydrogels depends on the number of previous population doublings on tissue culture plastic during 2D cell expansion. Decreased levels of H3K9me3 occupying promoters of dedifferentiation genes after the 2D culture were also retained in 3D culture. Suppression of H3K9me3 during expansion of cells isolated from a murine model similarly resulted in the loss of the chondrocyte phenotype and global remodeling of nuclear architecture. In contrast, increasing levels of H3K9me3 through inhibiting H3K9 demethylases partially rescued the chondrogenic nuclear architecture and gene expression, which has important implications for tissue repair therapies, where expansion of large numbers of phenotypically-suitable cells is required. Overall, our findings indicate mechanical memory in primary cells is encoded in the chromatin architecture, which impacts cell fate and the phenotype of expanded cells. SIGNIFICANCE STATEMENT Tissue regeneration procedures, such as cartilage defect repair (e.g. Matrix-induced Autologous Chondrocyte Implantation) often require cell expansion processes to achieve sufficient cells to transplant into an in vivo environment. However, the chondrocyte cell expansion on 2D stiff substrates induces epigenetic changes that persist even when the chondrocytes are transferred to a different (e.g. 3D) or in vivo environment. Treatments to alter epigenetic gene regulation may be a viable strategy to improve existing cartilage defect repair procedures and other tissue engineering procedures that involve cell expansion.