Importance
Data sets linking comprehensive genomic profiling (CGP) to clinical outcomes may accelerate precision medicine. Objective
To assess whether a database that combines EHR-derived clinical data with CGP can identify and extend associations in non–small cell lung cancer (NSCLC). Design, Setting, and Participants
Clinical data from EHRs were linked with CGP results for 28 998 patients from 275 US oncology practices. Among 4064 patients with NSCLC, exploratory associations between tumor genomics and patient characteristics with clinical outcomes were conducted, with data obtained between January 1, 2011, and January 1, 2018. Exposures
Tumor CGP, including presence of a driver alteration (a pathogenic or likely pathogenic alteration in a gene shown to drive tumor growth); tumor mutation burden (TMB), defined as the number of mutations per megabase; and clinical characteristics gathered from EHRs. Main Outcomes and Measures
Overall survival (OS), time receiving therapy, maximal therapy response (as documented by the treating physician in the EHR), and clinical benefit rate (fraction of patients with stable disease, partial response, or complete response) to therapy. Results
Among 4064 patients with NSCLC (median age, 66.0 years; 51.9% female), 3183 (78.3%) had a history of smoking, 3153 (77.6%) had nonsquamous cancer, and 871 (21.4%) had an alteration inEGFR,ALK, orROS1(701 [17.2%] withEGFR, 128 [3.1%] withALK, and 42 [1.0%] withROS1 alterations). There were 1946 deaths in 7 years. For patients with a driver alteration, improved OS was observed among those treated with (n = 575) vs not treated with (n = 560) targeted therapies (median, 18.6 months [95% CI, 15.2-21.7] vs 11.4 months [95% CI, 9.7-12.5] from advanced diagnosis;P < .001). TMB (in mutations/Mb) was significantly higher among smokers vs nonsmokers (8.7 [IQR, 4.4-14.8] vs 2.6 [IQR, 1.7-5.2];P < .001) and significantly lower among patients with vs without an alteration inEGFR(3.5 [IQR, 1.76-6.1] vs 7.8 [IQR, 3.5-13.9];P < .001),ALK(2.1 [IQR, 0.9-4.0] vs 7.0 [IQR, 3.5-13.0];P < .001),RET(4.6 [IQR, 1.7-8.7] vs 7.0 [IQR, 2.6-13.0];P = .004), orROS1(4.0 [IQR, 1.2-9.6] vs 7.0 [IQR, 2.6-13.0];P = .03). In patients treated with anti–PD-1/PD-L1 therapies (n = 1290, 31.7%), TMB of 20 or more was significantly associated with improved OS from therapy initiation (16.8 months [95% CI, 11.6-24.9] vs 8.5 months [95% CI, 7.6-9.7];P < .001), longer time receiving therapy (7.8 months [95% CI, 5.5-11.1] vs 3.3 months [95% CI, 2.8-3.7];P < .001), and increased clinical benefit rate (80.7% vs 56.7%;P < .001) vs TMB less than 20. Conclusions and Relevance
Among patients with NSCLC included in a longitudinal database of clinical data linked to CGP results from routine care, exploratory analyses replicated previously described associations between clinical and genomic characteristics, between driver mutations and response to targeted therapy, and between TMB and response to immunotherapy. These findings demonstrate the feasibility of creating a clinicogenomic database derived from routine clinical experience and provide support for further research and discovery evaluating this approach in oncology.