Structural variations of DNA greater than 1 kilobase in size account for most bases that vary among human genomes, but are still relatively under-ascertained. Here we use tiling oligonucleotide microarrays, comprising 42 million probes, to generate a comprehensive map of 11,700 copy number variations (CNVs) greater than 443 base pairs, of which most (8,599) have been validated independently. For 4,978 of these CNVs, we generated reference genotypes from 450 individuals of European, African or East Asian ancestry. The predominant mutational mechanisms differ among CNV size classes. Retrotransposition has duplicated and inserted some coding and non-coding DNA segments randomly around the genome. Furthermore, by correlation with known trait-associated single nucleotide polymorphisms (SNPs), we identified 30 loci with CNVs that are candidates for influencing disease susceptibility. Despite this, having assessed the completeness of our map and the patterns of linkage disequilibrium between CNVs and SNPs, we conclude that, for complex traits, the heritability void left by genome-wide association studies will not be accounted for by common CNVs. Copy number variations or CNVs are a common form of genetic variation between individuals, caused by genomic rearrangements, either inherited or due to de novo mutation. A major collaborative effort using tiling oligonucleotide microarrays and HapMap samples has generated a comprehensive working map of 11,700 CNVs in the human genome. About half of these were also genotyped in individuals of different ancestry — European, African or East Asian. Thirty loci with CNVs that are candidates for influencing disease susceptibility were identified. Published online last October, this vast data set is a landmark in terms of completeness and spatial resolution, and as John Armour wrote in News & Views , is likely to stand as a definitive resource for years to come. This resource is the main focus of a new genome-wide association study, from the Wellcome Trust Case Control Consortium, of the links between common CNVs and eight common human diseases. Providing a wealth of technical insights to inform future study design and analysis, the Wellcome study also implies that common CNVs that can be genotyped using existing platforms are unlikely to have a major role in the genetic basis of common diseases. Much genetic variation among humans can be accounted for by structural DNA differences that are greater than 1 kilobase in size. Here, using tiling oligonucleotide arrays and HapMap samples, a map of 11,700 copy number variations (CNVs) bigger than 443 base pairs has been generated. About half of these CNVs were also genotyped in individuals of different ancestry. The results offer insight into the relative prevalence of mechanisms that generate CNVs, their evolution, and their contribution to complex genetic diseases.